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ABSTRACT
In side-scrolling games such as Super Mario Bros, the player
interacts with a simplified, two-dimensional world made up
of elements from a finite set. Conventionally, specialized de-
signers build the levels of the game, applying their creativity
and experience to produce content exhibiting structural cor-
rectness (the player must be able to traverse the level from
start to end), interestingness and balanced difficulty, among
other quality features.

Professional designers are able to consistently construct high
quality game levels. In other words, their expert knowledge
gets embedded in the resulting levels. We aim to create a
learning mechanism capable of extracting design concepts
from a set of human-authored levels and to use the acquired
knowledge to algorithmically generate new ones. To that
purpose we propose to use stochastic graph grammars in
their both qualities, descriptive and generative. That is,
first, given a set of levels, we will learn a grammar that en-
codes and abstracts structural properties presented in these
levels together with their respective probabilities of occur-
rence. Next, the inferred grammar will be used to generate
new levels possessing the same properties.

Diverse PCG techniques have been used to automatically
generate game content since the early eighties [4]. The spe-
cific case of level generation for Super Mario Bros has also
been explored. For instance, in [8] levels were represented
as matrices and Markov Chains were employed to randomly
generate new content. Although the matrix representation
implicitly contains sound information about the elements
of a level and their relations, it does so in a way that is
too complex and expensive to analyze. This is a significant
hindrance, as these relations are major determinants of the
structure and quality of the level.

∗Specifically, our application is aimed at generating levels
for the framework Infinite Mario Bros, a clone of the classic
Super Mario World originally published by Nintendo [9].

From an analytical point of view, Super Mario Bros levels
are composed of elements that are not isolated, but relate
to each other in different ways. Moreover, an explicit and
succinct representation of the levels is fundamental for the
development of effective algorithms for learning and proce-
durally generating content. Therefore, we represent levels
as directed graphs, where nodes are the elements making up
the level and edges encode their semantic relations.

We classify all level elements of Super Mario Bros in various
types, according to their interaction with the player. In the
current iteration of the project, we have defined two types,
yet more may be devised after we get our first results.

Platforms: are groups of solid sprites (e.g. brick blocks,
rocks, pipes) that are consecutive and lie on the same row of
the level matrix. They form solid positions upon which the
character can stand and whence he can reach other elements.
In a level graph, platforms are represented by edges, labeled
as platform.

Item clusters: represent conglomerates of sprites that are
not solid, but still interact with the player (e.g. coins, power-
ups, enemies). If the cluster contains more than one sprite,
each one of them has at least one neighbor. That is, another
sprite in the same cluster located at a distance lower than an
established threshold. Item clusters are represented within
level graphs, by sets of nodes labeled as non-solid sprites.
Each of these nodes is connected with its closest neighbor,
through an edge labeled as cluster.

The concept of reachability, fundamental to our approach, is
also described in terms of a relationship between nodes. In
the graph abstraction, reachability between a platform and
other platforms or item clusters, is represented as an edge
with label reach.

In order to obtain the graph representation of the example
levels we will learn from, we implemented an algorithm to
transform a level in matrix form (i. e. grid), into a struc-
turally equivalent graph and vice-versa.

We hypothesize that human-authored, high-quality levels
contain design paradigms reflecting the knowledge and ex-
perience of their designers. Moreover, we assume that this
knowledge is encoded in a way representable by graphs.
Having this representation of levels, graph data mining tech-
niques can be applied to extract the knowledge embedded
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in a set of human-authored examples.

String grammars have been previously used to procedurally
generate game levels. Two notable examples are presented
by Dormans [3] and Shaker et al. [7]. Dormans [3] builds
level layouts for adventure games over mission scripts. First,
a human-authored, context-free grammar is used to generate
the mission as a series of actions and thereafter, a concor-
dant level is built by means of a space grammar. Shaker
et al. generate Super Mario Bros levels. The authors use
genetic programming to search the space of levels derivable
from a predefined grammar in a combined approach called
Grammatical Evolution [7].

Compton and Mateas [1] model platformer levels by means
of context-free string grammars. The grammars define how
a set of patterns of varied complexity, can be put together
to give form to a complete level. These patterns represent
optimal sequences of basic game components, automatically
built through a hill-climbing algorithm. The PCG process
is graph-grammar driven and in principle similar to our ap-
proach, as an initial graph is recursively expanded to form
a new level, following the grammar rules. However, their
approach assumes that the grammars are provided and no
mechanisms to automatically learn them are discussed.

In this work we go a couple of steps further by using graph
grammars to encode the relationships between various el-
ements of a level and by learning these grammars instead
of requiring them to be predefined. Specifically, we imple-
mented the SubdueGL algorithm [5]. SubdueGL is based
on the Subdue algorithm originally proposed by Cook and
Holder [2] for the discovery of frequent substructures in
graphs, where a substructure is a subgraph that can occur
one or more times in the input graph. Given a set of graphs,
SubdueGL learns a Node Label Controlled (NLC), context-
free graph grammar, striving to achieve an optimal balance
between the size of the substructures and their frequency
of occurrence. This criterion is called the MDL principle
[2]. The induced graph grammars are expected to define
patterns frequently observed in high-quality levels.

To accurately represent the occurrences of found substruc-
tures, we extend SubdueGL to learn stochastic NLC graph
grammars. This is achieved by introducing some additional
computations into the learning process, to get a maximum-
likelihood estimate for the “probability of applying” each
derived production. We base our extension on the approach
described by Oates et al. [6].

The level generation algorithm creates a new graph using the
learned grammar: It expands an initial graph (e.g. a single
non-terminal node representing the start of the level) by it-
eratively applying the productions of the stochastic NLC
graph grammar. On each iteration, the algorithm replaces
a non-terminal node with a subgraph. To do so, it selects a
suitable production of the graph grammar, in accordance
with their probabilities. In the next step, the so gener-
ated graph is transformed into a level grid and additional
details such as background sprites and decorations are ren-
dered onto it.

The PCG system we described is still work-in-progress.

We have already developed the representation of levels as
graphs and the graph grammar learning mechanism, but the
content generation module is still under development. We
plan to perform an evaluation to verify whether the gener-
ated levels preserve the quality features of the examples and
at the same time, are novel enough to amuse human players.
To do so, we intend to use metrics proposed by Shaker et al.
in [7] to compare the levels used as training instances with
the newly generated levels.

Furthermore, we would design an experiment involving hu-
man players to qualitatively evaluate how enjoyable are our
results and to compare our system against existing level
generators for Infinite Mario Bros, namely (i) the default
generator included as part of the framework, as developed
by Markus Persson; (ii) the GE generator by Shaker et al.
[7], based on grammar evolution; (iii) the winner of the
Mario AI Championship 2012 [10], an approach driven by
the player’s score, as presented by Chen et al.
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