
Exploring Game Space Using Survival Analysis

Aaron Isaksen Dan Gopstein Andy Nealen
aisaksen@nyu.edu dgopstein@nyu.edu nealen@nyu.edu

NYU Game Innovation Lab1

ABSTRACT

Game designers adjust game parameters to create an optimal ex-
perience for players. We call this high-dimensional set of unique
game variants game space. To help designers explore game space
and better understand the relationship between design and player
experience, we present a method to find games of varying di�-
culty. Focusing on a parameterized version of Flappy Bird, a pop-
ular minimal score-based action game, we predict each variant’s
di�culty using automatic play testing, Monte-Carlo simulation,
a player model based on human motor skills (precision, reaction
time, and actions per second), and exponential survival analysis of
score histograms. Our techniques include searching for a specific
di�culty, game space visualization, and computational creativity to
find interesting variants. We validate our player model with a user
study, showing it is e�ective at predicting game di�culty.

Keywords

player modeling, Monte-Carlo simulation, game design, automated
play testing, dynamic di�culty, game space, gameplay metrics,
survival analysis, computational creativity, motor skills, Flappy Bird

1. INTRODUCTION
As game designers, we use adjustable game parameters to tune

a game to achieve a desirable player experience. Each unique pa-
rameter setting creates a new game variant. We refer to this high-
dimensional space of game variants as game space. A point in
game space is a specific vector of game parameters; these settings
directly a�ect the player, enemies, or the level generation [39]. Ex-
ploring game space to find specific settings for an optimal experi-
ence is a considerable challenge, and we aim to better understand
the relationship between game parameters and player experience.

In this paper, we examine how game parameters, without chang-
ing the game rules, can a�ect a game’s di�culty. For example, we
would expect a variant with fast enemies to be more di�cult than
one with slow enemies, even if both versions are otherwise identi-
cal and have the same rules. Automatically creating new rules [3, 5,
11, 31, 38] is a related problem, but parameters alone have a signif-

Figure 1: We explore game space by simulating game variants

and estimating their di�culty using survival analysis.

icant impact on game feel [34]: getting Mario’s jump to feel right
is more about adjusting parameters than coding accurate physics.

The set of all game variants for a specific game is high-dimensional
and often impossible to search exhaustively – imagine adjusting
hundreds of independent control knobs to search for the perfect
game. We reduce the search space by focusing on game variants
that only change parameters, not the larger class of variants that in-
clude changes to game rules. While tuning games, designers rely on
intuition, experience, and user feedback to iteratively search game
space. The designer must estimate player skill, set game parame-
ters, play test, evaluate player experience using gameplay metrics,
revise parameters, and iterate until the game reaches an appropri-
ate level of di�culty [7, 9]. When a designer becomes an expert
at their own game, they can lose perspective on how their game is
experienced by new players. It can also be di�cult for designers to
break out of local optima and explore creative new regions of game
space. Automated play testing [20, 47] and visualization [42] help
with this process, guiding designers in their exploration to create
games best suited to individual skill levels and play styles [10].

We present a methodology for tuning game parameters that can
be used by everyday game designers without requiring human play

1game.engineering.nyu.edu/exploring-game-space

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



testers. Our general approach is shown in Figure 1. To explore a
new game variant, we select a parameter vector from a valid range
of values. Using this vector, we generate a level and simulate play-
ing it using an AI that models human imprecision. We repeat the
Generate and Simulate steps until we have a reliable histogram of
scores for the game variant. We then analyze the histogram using
exponential survival analysis [14, 27] to find the decay rate of the
exponential distribution. Faster decay predicts a harder game as
higher scores are increasingly less likely than lower scores.

For our research, we decided to work with a game that is pop-
ular and has relatively few adjustable game parameters. We chose
Flappy Bird [21] because it is a commercial and critical success,
spawning hundreds of similar games, and the rules are simple to
implement and understand. In Flappy Bird, a player must fly a con-
stantly moving bird without crashing into a series of pipes placed
along the top and bottom of the screen (see Figure 2). Each time
the player taps the screen, the bird flaps its wings, moving upward
in an arc while gravity constantly pulls downward. Each time the
bird passes through a pipe gap without crashing, the player scores a
point. Part of the appeal for Flappy Bird is the comically high di�-
culty level, especially when typical casual games are easy and for-
giving. Flappy Bird could have been much easier with a few small
adjustments, such as increasing the gap between pipes or decreas-
ing the width of the pipes, but these would have led to di�erent,
potentially less rewarding play experiences.

Accurately simulating game play requires an understanding of
how players react to game events: this is the process of player mod-
eling [30]. Our player model assumes that much of the di�culty
in simple action games is due to human motor skill, specifically
precision and reaction time [15]. Since we use a static, objective,
simulation-based player experience model [46], we do not need to
analyze prerecorded human play sessions of the specific game to
train our player model, and do not rely on live players to estimate
the current level of challenge or fun [8, 12, 16, 22, 36, 47].

Our goal is to make the simulator play like a human (novice, av-
erage, or skilled), not play with superhuman ability (as might be
required for some parameter settings of Cloudberry Kingdom, a
game that exposes its adjustable game parameters to players when
generating platformer levels [24]). As long as the model properly
predicts human perception of di�culty, it fits our purposes. In min-
imal, well-balanced, and compelling action games like Flappy Bird
or Canabalt [28], the player takes a relatively obvious path, but
executing that simple path is challenging [19]. In this paper we ex-
amine a game with simple path planning and without enemies, so
we can focus on the player’s ability to control the game – without
analytical evaluation of possible player movement [4], multi-factor
analysis of player or enemy strategies [10], dynamic scripting of
opponents [32], building machine learning estimators [36, 29, 45],
or evaluating design via heuristics [6].

2. GAME SPACE
Action games are defined by rules and parameters, designed to

produce a specific player experience through challenges. Predicting
the qualitative experience is hard, but we can examine the distribu-
tion of final scores to predict a quantitative di�culty of the game.
Throughout this paper, we refer to this measured di�culty as d.

The rules are implemented in code and define concepts like “if
the bird collides with the pipe, the game ends.” Because we keep
the rules fixed, we can represent our game space as a high-dimensional
space over the set of parameters used to tune the game.

We have chosen to use the following parameters for our imple-
mentation of Flappy Bird (see Figure 2). The original Flappy Bird,
and all our variants, have a constant value for each parameter dur-

Figure 2: In Flappy Bird, the player must navigate the bird

through a series of pipes without crashing. We modify the la-

beled parameters to generate unique game variants.

ing a play session since the game does not change as the player
progresses. In general, game parameters can change as the player
gets further into a level (for example, in Canabalt the game speeds
up as the player progresses) but we did not explore variants with
dynamic parameter values as they would require a change in the
rules that define Flappy Bird.

Pipe Separation ps – More distance between pipes is easier to
play, giving more time to react to changing gap locations.
Pipe Gap pg – The distance between the upper pipe and the lower
pipe. Narrower gaps are more di�cult as the bird has less room to
maneuver, requiring better motor skills.
Pipe Width pw – Wider pipes increase di�culty as the bird spends
more time in the narrow pipe gap.
Pipe Gap Location Range lr – The pipe gap locations are uni-
formly randomly distributed in a range somewhere between the
ceiling and the floor. Larger ranges are harder because there is
more distance to travel between a high gap and a low gap.
Gravitational Constant g – Acceleration of the bird in the y di-
rection, subtracted from the bird’s y velocity each frame. Higher
gravity causes the bird to drop faster, lowering the margin of error.
Jump Velocity j – When the bird flaps, its vertical velocity is set
to j, making it jump upward. Higher velocity makes higher jumps.
Bird Velocity v – Speed at which the bird travels to the right (al-
ternately, the speed at which pipes travel to the left).
World Height H – Distance between ceiling and floor. In Flappy
Bird, this is defined by the display resolution.
Bird Width and Height bw ;bh – Size of the bird’s hit box. The
wider and taller the bird, the harder it will be to jump through gaps.

By varying these parameters within sensible ranges, we can gen-
erate all variants of Flappy Bird that use the same set of rules. Many
of these parameters have constraints; for example, they all must be
positive, and Bird Height bh can not be larger than Pipe Gap pg or
the bird can’t fit through the gap.

3. PLAYER MODEL
We begin with a model of a player with perfect motor skills – a

perfect player with instantaneous reaction who would never lose at
the original Flappy Bird. Given a version of Flappy Bird defined
by its game parameters (a single point in game space as defined in
Section 2), we create an AI that finds a path through the pipes with-



Figure 3: Modeling precision by randomly adjusting the time

the simulated player jumps. Moving the jump earlier or later

can cause the bird to crash into the lower pipe or upper pipe.

out crashing. Instead of using an A* planner that finds the shortest
path, we chose to use a simpler AI which performs well but is easier
to implement and faster to run. Each time the bird drops below the
target path, the AI immediately executes a flap (which sets vertical
bird velocity vy instantly to jump velocity j). Whatever AI is used,
it should play with very good performance on solvable levels, and
should mainly only fail on impossible levels, such as a level with a
tiny pipe gap where the bird cannot fit through.

We then extend the AI to perform less well by modeling the main
components of human motor skill which impact di�culty in these
types of action games: precision, reaction time, and actions per
second. Adjusting these values lets us model di�erent player types,
since novices react slower and are less precise than experts.

3.1 Player Precision
When a player plans to press a button at an exact time, they

execute this action with some imprecision. We model this error
as a normal distribution with standard deviation proportional to a
player’s imprecision. Imprecision in an inherent trait, but is also re-
lated to the time a subject has to react to an event, called the speed-
accuracy tradeo�: the less time they have to react, the less accu-
rately they will respond [43]. For simplification, our player model
assumes precision is an independent variable and not dependent on
bird speed. In our user study (Section 7), we measured precision
as an error with standard deviation ranging between �p = 35:9 ms
and �p = 61:1ms, and use this range for game space exploration.

We model imperfect precision in our AI by calculating an ideal
time t to flap, then adding to t a small perturbation � , drawn from
a random normal distribution with 0 mean and standard deviation
�p , as shown in Figure 3. By increasing the standard deviation �p ,
the AI plays less well and makes more errors, leading to a higher
di�culty estimate (see Section 6.1.1 and Figure 6 for the impact of
varying precision). Reducing �p to 0 ms lets us test if a level is
solvable by the AI without taking into account human error.

3.2 Reaction Time
When a player sees a new pipe show up on the screen, it takes

some time to react. The speed of the player’s reaction is influenced
by factors inherent to the system [13], as well as factors a�ecting
the player themselves [35]. To identify an average reaction time to
expect from people playing our games, we measured a mean delay
� = 288 ms in our user study (Section 7).

We constrain the AI to react only after it has observed a new
pipe for � ms of simulated time. We found in our Flappy Bird ex-
periments the delay has minor impact on estimating di�culty, and
mostly matters for bird speed settings that are exceedingly fast.

3.3 Actions Per Second
Humans can only perform a limited number of accurate button

presses per second. In our user study, we measured an average 7.7
actions per second. We also limit our AI to this same number of ac-
tions per second. We simplify our model by keeping this constant,
although a more complex model would account for fatigue, since
players can’t keep actions per second constant for long periods.

4. ESTIMATING DIFFICULTY
Given our game space and player model, we now present our

methodology for estimating di�culty. We explore points in game
space by performing randomized simulations and examining the
distribution of scores. Our goal is to describe the perceived di�-
culty of a game by a single value d 2 [0;1], related to the di�culty
estimated by an AI using a player model with predefined settings
for reaction time, precision, and actions per second.

Impossible games (d = 1) are those games which can’t be played
successfully by any player. This can happen, for example, if the
jump velocity j is much weaker than gravity g, or if the pipe gap pg
is so small that the bird can’t fit through the gap. Impossible games
that appear playable can also occur with some parameter combina-
tions: for example, with high bird velocity bv , low gravity g, and
high pipe gap location range lr , it is often impossible to drop in
time from a high gap to a low gap. We eliminate these games by
first verifying that a perfect player with precision standard devia-
tion �d = 0ms can reach a goal score with high frequency.

Playable games (d < 1) are those games which can be played
successfully by some players. In our experiments, we found empir-
ical evidence that the set of playable Flappy Bird games is a single
connected space. In general, this is not a requirement for games
and may be disjoint for more complicated games.

Trivial games (d = 0) exist where all players will be able to
achieve the goal score, assuming a reasonable amount of e�ort. For
example, this can arise if the pipe gap pg is large. The player still
needs to pay attention and actively tap the screen, but the game is
trivial as long as they are actively participating.

Equal Di�culty Games are points in the game space where the
di�culty is approximately equal. These points can be viewed as a
(possibly disjoint) subspace: all games in the subspace for a fixed
value of d will have the same di�culty, and points near it will have
similar di�culties. By finding distant points within such a sub-
space, we explore a variety of games that are of equal di�culty.

The process to calculate d is composed of three steps: 1) Gen-

erate - build a new game variant based on the given parameters,
2) Simulate - use an AI to play the game with human-like behav-
ior, and 3) Analyze - examine the resulting score histogram using
exponential survival analysis to estimate the di�culty d of the sim-
ulated game. Generate and Simulate steps are repeated until we
have a stable score distribution for measuring in the Analyze step.

4.1 Generate
Each simulation begins by taking a parameter vector p and gen-

erating a new game variant. This involves placing the bird and pipes
in their starting positions and randomly distributing the pipe gaps.
In Figure 4, we show two di�erent generated game variants.

Because the levels are generated using a random process, it is im-
portant to generate a new level each time the AI runs, even though
the parameters p do not change. Otherwise, if the same random
layout of pipe gaps is used repeatedly, artifacts can arise in the
score distribution caused by a particular placement of the gaps. For
example, the gap locations can randomly come out approximately
equal for a section of the level, making that section easier. These
artifacts are averaged out by generating a new level each time.



Figure 4: Two di� erent levels created by the Generate step
given di� erent parameter sets. More simulations complete the
second version, so it has an easier estimated di� culty. The red
lines indicate the target location for the AI to ¯ap.

4.2 Simulate
Given the level created in the Generate step, we use a simple

heuristic to ®nd a path through the pipes by ¯apping when the bird
reaches a line in the lower half of the gap (these lines are drawn
in red in Figure 4). At each frame of the simulation, we predict
the next timet in the future when the bird will drop below this
ideal ¯apping location ± the ideal player would ¯ap at exactly this
time t. By reducing or increasing the standard deviation� p of
our precision model (Section 3.1), the AI plays more or less well.
We quickly check if a variant is impossible by using� p = 0ms
on a limited number of simulations, and only continue testing if a
majority of the these simulations score highly. It is important to
note that our AI does not need to be perfect to detect if a game is
possible, as the AI with� p = 0ms performs far better than humans.

To keep the AI from ¯apping faster than a human could tap,t
is limited by the number of actions per second. We also limit the
AI lookahead to only use information that has been visible on the
screen for at least� (the time it takes for a player to react to a new
event). In our experiments,� did not have much e� ect except in
extreme situations where humans would perform poorly anyway.

For each simulation, we get a scores, equal to number of pipes
that the AI passes before crashing, and we record each scores in
a histogramS. If the AI reaches a goal scoresmax , we terminate
the run so we do not get stuck simulating easy games where the
AI will never crash. Although Flappy Bird can theoretically go
on forever, human players tire or get distracted and will eventually
make a terminal mistake, but the AI can truly play forever unless we
enforce a maximum score. We call simulations withs < smax lost,
and simulations withs = smax won. We discuss how to setsmax
in Sec. 5.2. The Generate and Simulate steps are run repeatedly
until we have enough samples to adequately analyze the histogram.
We calculate the proper number of simulations in Sec. 5.1.

4.3 Analyze
After running the Generate and Simulate steps, we examine the

distribution of scores, as shown in Figure 5. If a player crashes
into pipex or the ground immediately before it, they will achieve
a score ofs = x ! 1 (the ®rst pipe isx = 1, giving a scores =
0). Using exponential survival analysis, we model the probability
that a player crashes into pipex or the ground before it with an
exponential distribution and its cumulative distribution function:

P(x) = � e! � x (1)

P(X � x) = CDF(x) = 1 ! e! � x (2)

Because the scores from our simulation follow an exponential
distribution, we describe the shape of the histogram by the decay
rate� . This one value� de®nes the survivability of the game vari-
ant. Distributions with higher� will decay faster and are more dif-

Figure 5: The score distribution is exponential (left). Faster de-
cay is more di� cult, so the red line is a harder variant. We take
the log of this distribution (right) and weighted least squares ®t
a line to calculate the decay constant: steeper is more di� cult.

®cult: a higher proportion of simulations die on each pipe. Lower
values of� imply the player is more likely to survive each pipe,
meaning the game is easier. Since it is harder to reach higher scores
than lower scores,P(x) is non-increasing, so� � 0.

The cumulative distribution function in Eq. 2 is the total proba-
bility of crashing into any pipe from 1 tox. Based on� , we de®ne
di� culty d as CDF(x = 1), the theoretical probability of crashing
into the ®rst pipe or the ground before it:

d = 1 ! e! � (3)

With this de®nition, di� culty d varies between 0 (trivial) and 1
(impossible), and 1! d is the expected fraction of simulations that
make it through each pipe.

We employ two methods to ®nd� and therefored: via survival
analysis of thelost simulations(Section 4.3.1) and survival analysis
of thewon simulations(Section 4.3.2).

4.3.1 Findingd from Lost Simulations
To ®ndd from the lost simulations where the AI died before

reaching the goal scoresmax and thus achieved a scores < smax ,
we take the natural log ofP(x) in Eq. 1 to get:

ln (P(x)) = ln(� ) ! � x (4)

We substitutey = ln (P(x)), m = ! � , andb = ln(� ) to see Eq. 4
®ts the linear formy = mx + b. We then use linear regression to
®ndm and therefore� . We ignoreb because this is only a scale
factor to make the probability histogram sum to 1.

Using the scores recorded during the repeated simulations, we
know the frequency of crashing into each pipex, which is the num-
ber of simulations that achieved a score ofs = x ! 1. We get prob-
ability P(x) by dividing each bucket count by the sum of all buck-
ets. We then ®t a line to this log-normal distribution and extract
the slopem = ! � (see Figure 5). We use theR MASSlibrary [25,
41] functionrlm with weighted least squares ®t based on the fre-
quency in the original score distribution, so that we do not give too
much weight to the low probability but high valued scores (which
can cause over®tting after log transformation).

When ®tting, we must not include the histogram bucket forsmax ,
which contains all the scores for every simulation that passes suc-
cessfully throughsmax pipes and terminates the simulation for that
single iteration. Including this bucket would distort the linearity of
the lost simulations histogram.

4.3.2 Findingd from Won Simulations
For easy games, most of the simulations will go on forever unless

they are terminated at some goal scoresmax . Easier games will


