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ABSTRACT
Games are often designed to shape player behavior in a de-
sired way; however, it can be unclear how design decisions
affect the space of behaviors in a game. Designers usually
explore this space through human playtesting, which can be
time-consuming and of limited effectiveness in exhausting
the space of possible behaviors. In this paper, we propose
the use of automated planning agents to simulate humans of
varying skill levels to generate game playthroughs. Metrics
can then be gathered from these playthroughs to evaluate
the current game design and identify its potential flaws. We
demonstrate this technique in two games: the popular word
game Scrabble and a collectible card game of our own design
named Cardonomicon. Using these case studies, we show
how using simulated agents to model humans of varying skill
levels allows us to extract metrics to describe game balance
(in the case of Scrabble) and highlight potential design flaws
(in the case of Cardonomicon).

Categories and Subject Descriptors
Applied Computing [Computers in other domains]: Per-
sonal computers and PC applications—Computer games

General Terms
Measurement

Keywords
Game design, simulation, playtesting, game playing, Monte-
Carlo Tree Search

1. INTRODUCTION
Creating a game, from a small-scale indie game to a large
AAA title, requires careful consideration of how design deci-
sions shape player behavior. Any single design choice—e.g.,
including a word in Scrabble—has rippling consequences for
the space of strategies available to players. While designers

directly shape the space of actions available to players, they
typically aim to create a core gameplay loop of player behav-
ior [30] and/or balance the competitive elements of a game
[13, 18]. Analyzing player strategies is especially important
when games afford many levels of play: particularly when
highly skilled players may pursue entirely different strategies
to amateurs [13]. At the moment, however, designers lack
ways to quickly analyze the space of afforded behaviors and
how this space changes for players of different skill levels.

Existing approaches to game analysis rely on playtesting
with humans [31]. While effective for informing some types
of game design, these methods can be expensive and time-
consuming. Further, playtesting is not exhaustive and fails
to address many design questions related to the space of
possible play within a game. As a result, existing methods
focus on abstracting limited examples of pre-existing behav-
ior rather than extracting knowledge about behavior within
a game domain itself.

Analyzing player strategy requires understanding patterns
of player actions in a game [27, 28]. In competitive games,
it is also important to consider how player strategies differ
between high- and low-skill players to understand the range
of strategic play a design affords. In this paper, we show
how planning technologies can simulate player behavior at
a variety of skill levels and how behavior metrics extracted
from simulated playthroughs can be used to analyze a game
design at multiple levels of abstraction. We apply Monte-
Carlo Tree Search (MCTS) to turn-based adversarial games
and develop a taxonomy of metrics to help understand the
space of strategic options available to players of varying skill
over the course of the game.

While designers are concerned with many aspects of player
strategy, we study four categories of player actions: sum-
mary statistics, atoms, chains, and action spaces. Sum-
maries are high-level metrics of overall gameplay character-
istics. Atoms are metrics of individual, context-free player
actions. Chains are metrics about the relationships among
sequences of player and inter-player actions [3, 7]. Action
spaces address the range of possible actions over the course
of a game [13]. We operationalize these concepts in terms of
the actions available to and taken by simulated agents in a
game. Smith, Nelson, and Mateas [36] analyze the effects of
simulated actions in a game by generating playtraces when
players are constrained to always or never take particular
actions under certain conditions. Jaffe et al. [18] develop
a framework for “restricted play” and evaluate win rate in
adversarial games when agents are subject to a variety of ac-
tion restrictions. Using playtraces generated by agents with
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differing computational constraints we approximate human
players of differing skills. We build on these approaches by
considering restrictions on agent search capabilities, extend-
ing to non-deterministic domains, and providing additional
levels of abstraction between concrete exemplar traces [36]
and abstract summary statistics [18]. We apply our method
to two games: the classic word game Scrabble and a card
game we made that models parts of Magic: The Gathering
and Hearthstone, called Cardonomicon.

Our work makes three contributions:

• Demonstrating how Monte-Carlo Tree Search (a plan-
ning algorithm) can simulate player behavior with vary-
ing player capabilities in a game.

• Providing four levels of design metrics to organize play
behavior analysis.

• Case studies applying this approach to two sample
games: Scrabble and Cardonomicon, a card game based
on common trading card game mechanics.

Through this work we aim to expand the use of simulated
agents and related techniques to inform the analysis and
design of games. These methods can enhance human de-
sign practices, support a hypothesis-driven scientific study of
game design, and enable the automated generation of games.

2. RELATED WORK
Automated game analysis is a growing field concerned

with developing methods to understand a game design with-
out requiring human play [18, 24, 36, 41]. Researchers have
developed methods to simulate game systems with little or
no human player activity [12], use constraint solving to check
for the existence of traces consistent with speculative as-
sumptions [33], apply exhaustive search to constrained game
spaces [38], and use game theory to evaluate balance in ad-
versarial games [18]. These efforts typically only evaluate
game design properties based on reachability or balance,
offering a limited view on how design decisions affect the
overall play experience. Our work provides additional levels
of abstraction to understand features of strategies including
action distributions and common action patterns.

Automated game generation researchers have simulated
player behavior using search to reach goal states [10, 37, 45]
(possibly subject to constraints on the states visited in the
reachability check [35]) and hand-coded heuristics for learn-
ability [40] or design aesthetics such as balance [5, 25]. By
contrast, games user research and game analytics [31] em-
phasizes aggregate properties of sets of player behaviors in a
game, such as qualitative patterns in player solution strate-
gies [20], metrics on game length or diversity of options [13],
or clusters of types of players [32, 39]. Ideally, automated
design analysis tools should facilitate reasoning on aggregate
properties of player behavior in a game without requiring ex-
haustive user testing. As many game state spaces cannot be
exhaustively sampled, there is a need for methods to sample
potential player behaviors in a game [34].

Evaluating potential player behavior for an arbitrary game
design is a central concern of general game playing research
[15, 22]. Recently, Monte Carlo Tree Search (MCTS) has
emerged as a popular technique in general game playing
after the successful application of MCTS to the game of
Go [6]. Game applications of MCTS include: card selection
and play in Magic: The Gathering [11, 44]; platformer level

completion [16, 42]; simulations for fitness function heuris-
tics in strategy [23], card [14], abstract real-time planning
[29], and general arcade games [26]; and high-level play in
board games including Reversi and Hex [2]. MCTS offers the
advantages of being game-agnostic, having tunable compu-
tational cost, and guaranteeing (eventual) complete explo-
ration of the search space. Unlike previous uses for (near-)
optimal agent play, we use MCTS to sample playtraces in a
game while varying agent computational bounds as a proxy
for player skill. Our approach trades exhaustively exploring
a small or abstracted design space for sampling larger, non-
deterministic game domains, complementing prior work in
this area.

Game visual analytics researchers have studied ways to
visualize game metrics to understand play behaviors [43].
Visual analysis examines many game properties, including
spatial distributions of events (e.g., using heatmaps), aggre-
gation and identification of player types (e.g., using dimen-
sionality reduction or clustering methods), and summariza-
tion of individual player behavior (e.g., through dashboards
and in- or out-of game representations). Here, we focus
on representations of the progression of states in a game—
visualization of how gameplay occurs through studying com-
mon states, actions, and progressions between states. A
progression of game states can be represented as a sequence
of player actions and as a sequence of game states. State
analysis methods have aggregated regularities in states vis-
ited in single-player games [1, 21, 43], while action analysis
methods have studied playtraces as sequences of actions [27].
We contribute to action analysis through considering com-
mon levels of analysis of the use of actions in games. Unlike
prior work focused on recognizing the similarity of action
sequences, we emphasize multiple levels of analysis of how
actions are used in a game to inform design decisions.

3. METHODOLOGY
One goal of this work is to automate player strategy analy-

sis. To do this, we use a simulated agent to sample player be-
haviors and then describe playtraces using summary statis-
tics and pattern analysis to inform design analysis. In this
section we review our agent simulation technique, Monte-
Carlo Tree Search, and describe the game domains we use
in case studies to illustrate our approach. Our studies con-
cern discrete, turn-based, adversarial games that emphasize
strategic decision-making. These are games where two op-
posing players alternate turns using actions that modify dis-
crete domain values. Searching over all possible traces in
most adversarial game domains is intractable (e.g., evalu-
ating at least all permutations of card draw and play or-
ders between two players), requiring a sampling approach
to search.1

3.1 Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) is a general game play-

ing technique with recent success in discrete, turn-based,
and non-deterministic game domains [6]. MCTS is a sampling-
based anytime planning method that can use additional com-
putational resources to more fully explore a space of possi-
bilities, allowing control over the balance between computa-

1Approaches based in abstracting game state or actions are
also possible, though these introduce more coarseness in the
states or actions checked.



Figure 1: Diagram of MCTS algorithm steps.

tional time and exploration of the full space of play behav-
ior. We choose MCTS as a behavior sampling algorithm for
its proven high-level performance, domain generality, and
variable computational bounds. Note that other algorithms
may serve this need; we leave comparison to alternative al-
gorithms to future work. For simplicity, both of our case
study domains have been made perfect information to facil-
itate the use of MCTS.

MCTS’s game playing success derives from modeling the
quality of a space of actions over the course of a game.
MCTS models game play using a tree to track the value
of potential courses of action in a game. Actions to take
are tree nodes and links between nodes indicate the next
action(s) available after a prior action (Figure 1). Nodes
for already attempted actions are expanded and not-yet-
attempted nodes are unexpanded. Each leaf node in the tree
tracks a reward value for the agent depending on if it won
or lost the game. Typically, a reward value of 1 is assigned
to wins and a reward value of -1 to losses.

The MCTS algorithm has four steps (Figure 1):

1. Selection Choose how to descend a tree of expanded
nodes until reaching an unexpanded node.

2. Expansion Expand the set of actions available at an
unexpanded node and choose a new node.

3. Simulation Follow a fixed strategy (usually random
choice) for how to act over all remaining unexpanded
decisions until reaching the end of the game.

4. Backpropagation Use the reward from the end game
state reached (e.g., win or loss) to update the expected
value of the newly expanded node and all of its parent
nodes in the tree.

MCTS balances between agents exploring alternative actions
and exploiting known good actions. Typically, selection uses
the UCB1 algorithm, which picks a node using a combina-
tion of the average reward (eventually) received when taking
the action and the proportion of all selections that used that
node [8]. Note that UCB1 forces selection to first visit ev-
ery possible move at least once before choosing among all
visited nodes based on their value. We use UCB1 because
this property ensures our agents fully explore the space of
move options before devoting additional resources to better
modeling the value of known choices.

In our case studies we use the strength of MCTS to play
well in discrete, turn-based, adversarial games and combine
this with the ability to tune MCTS to have better or worse
play. A key parameter to the MCTS algorithm is the num-
ber of rollouts used—the number of times the full cycle is
repeated. By increasing the number of rollouts allowed to
an agent, we enable the agent to more fully explore the value

of possible actions in the game and improve play (see also
Chapter 5, p. 60 in [17]).

We use MCTS rollouts as a proxy for player skill. Mod-
eling the effects of player skill offers several advantages to a
design tool: many games are designed to reward more skilled
players with greater rewards or higher win rates [3]; design-
ers are often concerned with differences in play style depen-
dent on player skill [13]; and games (including adversarial
games) are often designed to enable a smooth progression of
skill as players learn over time [19]. In adversarial games,
varying the rollouts used by two MCTS agents can compare
how gameplay looks when two agents vary in levels of skill,
as well as compare the effects of relative differences in skill
between two agents; e.g., comparing high-level play between
two strong agents or comparing games between a weak and
strong agent. This is an improvement over human testing as
it affords designers the ability to explore many different skill
combinations, including some that may be difficult to exam-
ine using human playtesting alone. In our design metrics we
compare differences in base player skill and differences be-
tween opposing players’ skills.

3.2 Game Domains
Our case studies concern two games: the word game Scrab-

ble and Cardonomicon, a competitive card game we devel-
oped that is inspired by Hearthstone and Magic: The Gath-
ering. Below we present these domains and discuss how each
environment is represented to the MCTS agent.

Scrabble. Scrabble is an adversarial game where players
take turns placing tiles onto a game board to create words.
In Scrabble, players have a rack of seven tiles, each with a
single letter, that is hidden from the opposing player. In this
implementation, we have simplified Scrabble so agents have
perfect information about one another’s states and perfect
knowledge of all legal words. On each player’s turn, they
select tiles from their rack and place them on the game board
such that 1) at least one of the tiles is placed adjacent to one
of the other player’s tiles and 2) the tiles create dictionary
words either left to right, top to bottom, or both. The player
that goes first, however, only needs to play a word that goes
through the center space on the board.

The MCTS agent represents moves on a turn as the word
to form on that turn. Thus, the space of possible moves
on a turn is all possible words that can be made on that
turn. After the current player has placed a word on the
board, they receive points based on the letters used to form
the word. Each letter tile has a score associated with it;
a word’s score is the sum of the score values of the letters
used to make that word. The board is also populated with
bonus spaces that increase the value of a word. Bonus tiles
available on a typical Scrabble board can double or triple the
value of either a specific letter tile or of the word that the
letter tile is part of.

Once a player receives points for a move, that player draws
tiles at random until their rack is refilled with seven tiles
and the turn ends. Normally, the game ends when a player
cannot draw new tiles and the winner is the player with the
highest score at that point. In our implementation, however,
the the first player to meet or exceed 150 points wins.

Scrabble exposes several common design challenges when
choosing content for player actions in a game. Examples in-
clude determining a suitable distribution of tiles that play-
ers can choose from or determining the scores of individual



tiles. These factors are further complicated by the random
tile drawing order.

Cardonomicon. Cardonomicon has the core elements of a
class of game mechanic-heavy adversarial card games, exem-
plified by games like Magic: The Gathering. From a design
perspective, games like Magic are challenging to develop for
several reasons. Each card must be balanced with respect
to all other available cards: e.g., a single overly powerful
card can make all other cards irrelevant. Further, the ran-
dom order of card draws and non-deterministic effects of ac-
tions introduce a large space of non-deterministic outcomes
to sample over. While Magic has hidden information, for
simplicity Cardonomicon is perfect information.

In Cardonomicon, two players start with an identical deck
of 20 cards representing creatures. Gameplay consists of
drawing cards, spending mana to place cards on the game
board, and using cards to attack one another and the oppos-
ing player’s hero. Cards are parameterized by health, attack
power, and mana cost. Players start with a single hero card
on the board with 20 health and 0 attack; a player loses
when their hero’s health is reduced to or below 0. Each
turn, players may play any combination of cards for which
they can pay the mana costs. A player’s mana starts from 1
on the player’s first turn and increases by 1 each turn up to
a cap of 10. Cards on the board may attack any other op-
posing card once per turn after the turn the card is played.
When a card attacks, the opposing card’s health is reduced
by the attacker’s attack; attacking cards also receive damage
from opposing cards. When a card’s health is at or below
0 it is removed from the board. We designed a set of cards
to allow the player to play one of multiple cards on each
turn (with differing parameterizations), assuming they have
drawn a playable card.

The MCTS agent in Cardonomicon represents moves as
either playing a card or using a card to attack another card
on the opponent’s board. One turn may involve multiple
moves in a row. The agent has one move for every card that
can be played in the agent’s hand and one move for every
pair of their card attacking a target opponent card. Only
cards that may attack are represented and no attacks on the
agent’s own cards are permitted as this has no purpose in
the Cardonomicon domain. One additional move to end the
turn is always available. Thus, MCTS agents reason about
whether to play a card, use a card to attack the opponent,
or end their turn.

Cardonomicon exposes many common design challenges:
ensuring all cards are worth using at some point during a
game, avoiding degenerate strategies where players always
follow the same rote actions, and understanding the space
of decisions a player faces over the game.

4. SKILL-BASED DESIGN METRICS
In this work we focus on automating the analysis of game

designs through design metrics for player actions and how
they change based on player skill: e.g., more skilled play-
ers may score more points per turn in Scrabble. We use
a simple taxonomy to distinguish classes of design metrics:
summaries, atoms, chains, and action spaces.

• Summaries are high-level design metrics aggregating
gameplay trace features of relevance to designers; e.g.,
the length of the game or probability of the first- or
second-turn player winning.

• Atoms are metrics tracking individual aspects of game
state or actions; e.g., the frequency of playing a given
letter tile or card.

• Chains are gameplay patterns; we address two types:
combos, regularities in how a player combines actions;
and counters, regularities in how a player responds to
opponent actions.2

• Action spaces represent the set of actions available to
a player and how they vary over time; e.g., the number
of unique cards a player can play on each turn.3

Our taxonomy is not meant to be all-encompassing, but
rather to offer organization to types of strategy design met-
rics and how they may be visualized and analyzed through
simulated (or human) agents. Below we describe these met-
rics and ground them in our test game domains.

Summaries. Summary analysis provides designers with
high-level metrics to inform which other metrics to examine
and how to frame the results. In Scrabble and Cardonomi-
con summaries include the length of a game (in turns) and
the probability of the first turn player winning.

Atoms. Atoms characterize single actions in a game. In
Scrabble, atoms include the use of (or option to use) cer-
tain words to score points. In Cardonomicon, atoms include
playing cards and using cards to attack. Analysis of atoms
provides designers with an understanding of which actions
and states in a game are being used (and which are not).
Getting a high-level sense of the gap between actual use
of an action against when the action appears as an option
enables designers to gauge whether specific actions are over-
(or under-)used. Comparing these results across agents with
varying skill enables an understanding of which actions are
relevant to high-(low-)level play. Analysis can compare the
rates of using different actions, having the option to use an
action, or the difference between rates of using an action
against the frequency of the action being available. Visual-
izations of atoms include histograms to show frequency of
use or availability of atoms.

Chains. Chains characterize recurrent gameplay patterns.
Chains subdivide among combos—action sequences used by
a single player—and counters—action-counter pairs between
actions taken by two players. Combos appear in games with
real-time action or where a player may take multiple ac-
tions within a single turn. In Cardonomicon, combos include
chains of playing cards or using cards to attack; Scrabble has
no combos as each turn consists of a single move. Coun-
ters appear in games with turn alternation or simultaneous
moves where a player takes an action in response to an op-
ponent action. In Scrabble, counters involve playing a word
in response to an opponent word choice; counters appear in
Cardonomicon as attacking a card after an opponent plays
it in the previous turn or playing a card in response to an
opponent play. Analyzing chains provides designers with in-
sight into emergent strategy within a game, including chains
of actions that may exercise a skill [9] or ways players have
discovered to thwart their opponents [7]. Understanding the

2Our use of the terms ‘atom’ and ‘chain’ are distinct from
those proposed by Dan Cook [9], but share the notion of dis-
tinguishing between single actions as atoms and patterned
sequences of actions as chains.
3Our use of action spaces is similar to Elias et al. ‘game arc’
(Chapter 4, pp. 122–129 in [13])



strategies players use in a game can refine an understand-
ing of what core gameplay loop players exercise (at varying
levels of skill) to compare against a gameplay loop design
goal. Visualizations of chains include histograms of chains
in a game and playtrace browsers showing sets of traces with
chains highlighted as parts of those traces.

Action Spaces. An action space characterizes atoms across
time or across game states. In Scrabble, an action space can
visualize the number of distinct tiles played or the number of
distinct words available to complete across turns in a game.
In Cardonomicon, an action space can visualize the num-
ber of distinct cards available to play or average number
of cards able to attack across turns. Action space analysis
can provide information on the progression of a game and
guide choices about pacing and growth of game complexity.
Designers can use action space visualizations to understand
how the number of choices varies over the course of a game
and how that range differs for players of differing skill. Vi-
sualizations of actions spaces include line charts of action
frequency over turns in a game, with multiple lines to indi-
cate players of differing skill levels.

5. CASE STUDIES
To demonstrate how player simulation and our metric tax-

onomy can aid in game design evaluation, we performed two
case studies. The first case study of Scrabble explores how
our metrics can evaluate a balanced game. The Scrabble case
study verifies that our technique can identify balance in a
design and differences in player skill. The second case study
of Cardonomicon shows how our metrics can assess a game
with a flawed design. The Cardonomicon case study shows
how simulated agents and design metrics identify game flaws
to inform future design iterations.

5.1 Playtrace Collection
Both studies used the same general methodology of sam-

pling playtraces using MCTS agent pairs of varying com-
putational bounds as a proxy for varying player skill. We
varied agent reasoning to consider roughly one to two moves
ahead in the game. We used two moves ahead as an up-
per bound as research in reasoning on recursive structures
suggests people are able to reason to roughly two levels of
embedding; a result borne out in models of deductive reason-
ing on logic puzzles [4]. Our MCTS selection policy (UCB1)
forces trying all child moves of a given move once before re-
peating a move: thus all rollouts will first explore options
for a single move before exploring two-move sequences.

To set computational bounds we approximated the aver-
age number of moves available to an agent and used this
number to estimate the number of rollouts an agent would
need to consider one or two moves ahead in the game. To ex-
amine a range of agent capabilities we initially created three
agent computational bounds: (1) a weak agent with enough
rollouts to explore the full set of moves on a given turn,
but lacking resources to explore the two moves ahead, (2) a
strong agent with enough rollouts to fully explore moves on
this turn and the next turn, and (3) a moderate agent with
rollouts halfway between these two. Initial testing revealed
little difference between the latter two agents; our results
report agents that halve the number of rollouts of the two
stronger agents as these more clearly illustrate the outcomes
of variable player skill. We believe the lack of differences

derives from marginal returns for greater computational re-
sources in our case study domains, likely due to their large
branching factor.

For each game domain we ran a pair of agents where each
agent was set at one of these three levels. For each agent
pairing we simulated 100 games to get aggregate statistics on
agent performance and visualized these results to examine
relevant design metrics in both game domains.

In Scrabble, we approximated the number of rollouts for a
single level deep by looking at the median number of possible
words an agent could complete on a board: 50. Thus, the
weak agent used 50 moves. Initially the strong agent was
allowed 2500 rollouts (502 for two moves ahead) and the
moderate agent 1250 rollouts. After halving, this resulted in
a moderate agent with 650 rollouts ((1250−50)/2+50 = 650)
and a strong agent with 1250 rollouts.

In Cardonomicon, we approximated the number card play
options as choosing 2 cards to play each move out of a hand
of 6 cards (

(
6
2

)
= 15 moves). We modeled attack choices

assuming the player (and opponent) has approximately 3
cards on the board and one hero card, yielding 3 source
card choices for 4 targets (34 = 81 moves). Together this
yields a total of approximately 100 moves considered for the
weak agent, 10000 for the strong, and 5000 for the modest.
After halving this resulted in 100, 2500, and 5000 rollouts
for the weak, moderate, and strong agents, respectively.

Note that an alternative strategy to sampling up to two
levels deep would be to have agents explicitly model a se-
lection policy with pure exploration up to one or two levels.
In this case, search bounds would vary over the course of
the game. We chose to use a fixed number of rollouts to
capture the notion of agents of fixed ‘capability’ in terms of
resources to devote to reasoning.

5.2 Scrabble Metrics
Our first study shows how our metrics reveal balance and

player skill differences in Scrabble despite the change to end-
ing the game at 150 points. The study shows these changes
did not upset the game balance and demonstrates that Scrab-
ble rewards higher skill play.

Summaries. The summary statistics that we examined in
Scrabble are win percentage (Figure 2) and the length of a
game based on turns. Ideally, players with higher skill will
consistently defeat lower-skilled opponents; however, it is
unclear how skill will affect game length.

By comparing agents of varying rollouts we found the
game is balanced: higher skilled agents consistently defeat-
ing lower skilled opponents (Figure 2). This difference is
very pronounced when the strong agent plays against the
weak agent; however, it becomes less pronounced as agents
increase in skill. We also gathered metrics for first turn win-
rate and found no first turn advantage.

We discovered that games played against skilled oppo-
nents are slightly shorter. When weak agents play against
each other games last 26 turns on average; this decreases to
22 turns when strong agents play against each other. This
is likely because skilled opponents make moves worth more
points. This belief is further supported by the results of our
analysis of agent skill as it relates to the length of words
played. Another possible explanation for this decrease in
turns is that more skilled agents are able to better utilize
the bonus tiles that exist on the board. Effectively using
these tiles can drastically increase individual word scores.



Figure 2: Win percentage based on agent skill. Win percent-
ages are calculated from the perspective of Player 1. Blue
regions correspond to win percentage greater than 50%. Red
regions correspond to a win percentage less than 50%.

Figure 3: Word length frequency in Scrabble by skill.

Analyzing the use of these tiles, however, showed there was
little to no difference in usage patterns based on agent skill.
Based on this finding, the main source of score difference be-
tween agents seems to stem from the length of words played.

Atoms. In Scrabble, the main atom metrics are from word
usage rates as moves are words played. Figure 3 shows
the word usage distribution separated by word length and
grouped by agent skill. Weak agents tend to favor playing
shorter words, while stronger agents play a wider variety of
word lengths. However, skill has little effect on the specific
words played. Figure 4 shows the most popular three-letter
words in our simulations and how often each agent used each
one. There is no consistent trend in the specific words an
agent plays (while we show three-letter words, these findings
were consistent across word lengths).

Chains. In Scrabble, counters are the words played by the
opponent after a word has been played by the other player.
To determine what common counters in Scrabble were, we
used frequent itemset mining on itemsets comprised of the
words played on a given turn and the words played on the
next turn. Through this analysis, we discovered that most
counters either add to the previously played word, or build a
two or three-letter word off of the word that was previously

Figure 4: Frequency of the top three-letter words in Scrabble
by agent skill.

Figure 5: Median number of words that could be played per
turn based on skill.

played. For example, one of the top counters to a player
playing the word “con” on a turn was to add an “i” to the
beginning of it to make the word “icon.” This is expected as
building off previously played words will typically result in
a higher point total since the player is playing a longer word
than the opponent.

Action Spaces. To describe the action space in Scrabble,
we examined the space of possible words that can be played
and were actually played. Figure 5 shows the median num-
ber of possible words that could have been played on a given
turn based on skill. This conveys how the complexity of
the action space changes over time. Figure 5 shows that the
space of possible actions shrinks over the course of the game,
likely because valid word placements become scarcer later in
the game. The figure also shows that stronger agents have
more possible actions on a given turn than weaker agents.

Figure 6 shows how much of the action space was ac-
tually explored over the game. This figure shows that the
space of words played shrinks faster for stronger agents than
weaker agents, likely because stronger skilled agents success-
fully identify moves worth more points and avoid the rest of
the action space.

5.3 Cardonomicon Metrics
Our second study examines Cardonomicon, showing how

our metrics can identify design flaws. Recall that Cardo-
nomicon is highly constrained in cards that are available to



Figure 6: Number of unique words played per turn by skill.

Figure 7: Win rates for second turn player in Cardonomi-
con. The x-axis indicates agent strength for the second turn
player; the y axis indicates the opposing agent’s strength.

use and fixes the deck that players use. These major al-
terations to the typical structure of a card game negatively
affected the balance of the game. In the following sections,
we show this imbalance through our metrics.

Summaries. A key design flaw in Cardonomicon is that
the player going second is at a large disadvantage in terms
of win rate. Figure 7 shows the win rates for the player who
starts second. Regardless of agent strength, the player going
second has a win rate substantially less than 50%. That said,
win rates do increase for the agent going second if they are
more skilled than the agent going first. Thus, while agent
skill influences player win rates in Cardonomicon, the game
is flawed in giving a strong disadvantage to the player taking
the second turn. We speculate this is due to our partial
adoption of mechanics from Hearthstone. In Cardonomicon,
cards are able to attack and receive damage in retaliation,
but the second player has no advantage in being able to play
more cards on their first turn. As such, the second player
will always be deploying cards after the first player, but lacks
a mechanism to catch up to the player who acts first.

Stronger agents have (slightly) longer games when matched
to evenly skilled opponents: median 16, 17, and 18 turns for
the weak, moderate, and strong agents, respectively. We
attribute this trend to stronger agents being able to better
counter one another while retaining enough cards to play
until the end of the game.

Atoms. Cardonomicon atoms consist of actions to play
cards or use cards to attack. When examining the frequency
of playing different cards we found stronger agents generally
play more cards, but show no large differences in their use
of specific cards. Stronger agents manage their mana to
play more cards, but do not seem to favor specific cards to
play. This likely indicates the deck size in Cardonomicon is
too small: agents will play all of their available cards faster
than they draw new cards and thus have no opportunities
to favor playing specific cards against others.

When examining the frequency of using cards to attack,
stronger agents also tend to use cards to attack more over-
all. Three cards showed disproportionately greater use by
stronger agents compared to weaker agents: these three
cards all had large amounts of health but low attack for
their cost. Strong agents thus use these cards to destroy
multiple weaker cards by intelligently trading off card at-
tacks and retaliations. That is, stronger agents recognized
the value in using a card with low attack (but high health)
to remove several cards with lower attack and health over
several turns. This confirms Cardonomicon allows for a lim-
ited form of strategic variety and supports the notion that
MCTS rollouts can help detect these potential strategic vari-
ants dependent on player skill.

Chains. Chains in Cardonomicon are primarily combos:
sequences of actions taken by a single player in a turn of the
game. As expected from our results from the atom analy-
sis, we found no significant combos in terms of playing or
attacking cards. We attribute this to the lack of any strong
synergy among cards in Cardonomicon: no pairs were par-
ticularly outstanding as no pairs had effects that would be
advantageous to use together. This highlights another way
to detect design flaws through these metrics: the absence of
chains indicates no strong synergies exist in the design for
players to use in combos.

Action Spaces. As with Scrabble, stronger Cardonomi-
con agents have a larger space of cards they may play (Fig-
ure 8) and use to attack (Figure 9). Specifically, we ob-
served stronger agents have more options to play cards late
in the game, while having fewer mid-game attack options
with more late-game attack options. These results align with
intuition: in the early game both weak and strong players
have a similar range of options constrained primarily by the
amount of mana players have. By mid-game stronger play-
ers will have fewer attack options as they retain cards they
may play for the late game. Playing these cards in the late
game leads to more options to attack. Aligning with these
analyses of the number of possible plays, we observed that
more skilled players both play and attack with a larger num-
ber of cards on average. They also are capable of a larger
number of possible actions in these game phases. Thus,
skilled players also actually use this larger set of options.
Overall, these results demonstrate that more skilled players
in Cardonomicon will open more plays in the mid-game by
intelligently retaining cards before using these cards in the
late game; in sum, these players are more efficient in their
use of mana.

6. LIMITATIONS
Our technique has two key limitations: (1) MCTS rollouts

only represent one dimension of player skill and (2) the algo-
rithms used only apply to fully observable domains. Varying



Figure 8: Average number of possible card plays per turn
based on skill.

Figure 9: Average number of possible attacks per turn based
on skill.

MCTS rollouts alters player skill in terms of the extent to
which an agent considers different courses of action. Other
aspects of skill in games—including visual perception, motor
control, memorization and recall, etc.—are not modeled by
rollouts. Thus, in Scrabble our approach assumes all players
have perfect knowledge of game systems in terms of valid
dictionary words and always apply this knowledge. Gener-
alizing our technique to real-time domains will require mod-
eling other facets of player skill including visual perception
and motor control. Real-time MCTS variants may apply to
these cases, though determining the appropriate skill proxies
is an open problem [6].

Both of our case study domains have been simplified to
be fully observable. Algorithms for MCTS that address do-
mains with partial information can potentially be applied as
substitutes for the simple implementation we use [6].

7. CONCLUSION
In this paper, we have shown how anytime planning agents

can simulate players of various skill levels in turn-based, ad-
versarial games. We provide several types of metrics to ana-
lyze (human or simulated) player strategies from playtraces—
at the levels of summaries, atomic actions, action chains, and
action spaces—and show how these metrics can identify bal-
ance concerns and differences in player strategic play. We
show the value of these metrics by using them to assess two
different games: Scrabble and the card game Cardonomicon.
In Scrabble, these metrics show the game remained balanced
despite our minor alterations to it. In addition to identify-
ing balance, our case study on Cardonomicon shows these
metrics can help identify design flaws. The ability to iden-
tify imbalances and differences in player strategies provides
designers with new lenses on game design that ground con-

cepts often discussed in design analyses [13, 30]. Through
simulated design evaluation systems we hope to augment the
practice of game design, enable the scientific testing of game
design hypotheses in terms of how designs influence player
strategy, and improve the state of automated game genera-
tion systems through more sophisticated design evaluation.
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