
“With Fate Guiding My Every Move”
The Challenge Of Spelunky

Tommy Thompson
Department of Computing & Mathematics

University of Derby
Derby, UK

tommy@t2thompson.com

ABSTRACT
This paper aims at identifying the challenge of the video
game Spelunky as a benchmark problem for Arti�cial In-
telligence and Computational Intelligence methods. This is
achieved by giving a thorough breakdown of the mechan-
ics and design of the game, which are indicative of features
previously established in research on complexity in 2D plat-
forming games. We provide a series of theorems to indicate
the challenge of Spelunky, noting that in the general case it
not only sits within PSPACE but is at least NP-Hard. Our
aim is to highlight this particular problem to the community
to merit further discussion.

Categories and Subject Descriptors
I.2.1 [Arti�cial Intelligence]: Applications and Expert
Systems|Games; D.2.8 [Software Engineering]: Met-
rics|complexity measures, performance measures

General Terms
Theory

1. INTRODUCTION
As a player begins a new run of the video game Spelunky [17],
we are greeted with an opening narration by the protagonist:
the Spelunker. This narration not only sets the mood for
the player, but adds an air of mystery to the upcoming tri-
als and tribulations that await. This opening, like the game
world itself is generated at runtime1: resulting in di�erent
experience with each playthrough. This variation, achieved
courtesy of a Procedural Content Generation (PCG) algo-
rithm, combined with roguelike design principles are what
give Spelunky such an air of discontent; a video game that
is equally challenging as it is relentless. While on a sur-
face level it shares many similarities with classical 2D plat-
former games such as Super Mario Bros. [9] and Sonic the

1The title of this paper is one of the many opening lines that
are selected at random by the game.

Hedgehog [13] due to its reliance upon platformer mechan-
ics, these features belie a much more complex task, which
must be completed in one attempt. The mechanics, goals
and secrets of Spelunky present an incredibly rich problem
for players that not only drives newcomers to the cave en-
trance, but also helps build and maintain its dedicated fan
base.

These challenges in-turn, are what make Spelunky an inter-
esting domain to explore for Arti�cial Intelligence (AI) and
Computational Intelligence (CI) methods. Recent work by
the authors has focussed on the creation of a software API
that permits AI/CI applications within the Spelunky do-
main. While this work is still in its infancy, it is important
to indicate the relevance and challenge this domain presents.
This consideration must be made given that Spelunky, while
popular, is not as widely recognised as other games-based
AI benchmarks such as Super Mario Bros. [5] or Ms. Pac-
Man [8, 12]. As such, this paper is an e�ort to identify the
complexity of this task in contrast to other benchmarks that
would be considered similar in nature.

In this paper, we discuss the recurring features and mechan-
ics of the Spelunky video game that impact the overall com-
plexity of the task. Our contributions are providing a con-
cise discussion of the gameplay mechanics and trappings of
the Spelunky game, followed by preliminary analysis of the
games challenges, largely denoting that the game sits at least
within NP-Hard space. By considering relevant literature in
the �eld of computational complexity of video games, we
generate several reductions of the problems this game ex-
hibits in an e�ort to establish theorems of complexity. We
conclude with some discussion of how Spelunky compares to
existing competition benchmarks such as Super Mario Bros.
and Ms. Pac-Man and subsequently what potential chal-
lenges the game mechanics may bring for AI/CI methods.

We begin in section 2 by identifying related literature to
the task of establish hardness of video games with similar
mechanics, as well as the methods by which our complexity
assessment is driven. In an e�ort to ensure the game is fully
understood, we dedicate section 3 to a formal introduction
to the Spelunky game; identifying the gameplay mechanics,
rules and methods of progression. This will serve as means
to identify to the reader elements of play that have an im-
pact upon the complexity of the task. This knowledge is
subsequently adopted in section 4 as we identify key ele-
ments of Spelunky gameplay that help us establish theorems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Proceedings of the 10th International Conference on the Foundations of
Digital Games (FDG 2015), June 22-25, 2015, Pacific Grove, CA, USA.
ISBN 978-0-9913982-4-9. Copyright held by author(s).



for our complexity proof. We conclude with some discussion
of what challenges the mechanics discussed in section 4 may
bring for AI/CI methods in section 5.

2. RELATED WORK
The practice of establishing the computational complexity
of games - be they board games, card games or video games
- is an important one. It consolidates the challenge of a
game in such a fashion that not only provides evidence of
why humans continue to �nd these problems interesting, but
more critically indicates to the research community the chal-
lenge presented by these problems as an optimisation task.
This is largely encapsulated by works detailed in [3], which
gives a thorough though by no means complete survey of the
problem area.

Another excellent source is the survey conducted within [7]
that provides a lengthy discussion of complexity classi�ca-
tion with respect to ‘puzzles’, these are single-player games,
ranging from paper-based or toy puzzles such as n-Puzzle
and Rush Hour to video games of relatively small-scope such
as Minesweeper and KPlumber. This survey also presents a
useful introduction to the problem area for those new to
computational complexity in games.

This paper is largely inuenced by more recent work in es-
tablishing the complexity of video games. There is a signif-
icant body of work focussed on the classi�cation of ‘classic’
video games dated from the 1980’s and 1990’s. This helps to
establish that traditional ‘platformer’2 titles such as Super
Mario Bros. and Donkey Kong Country [11] are at least NP-
Complete [1, 2]. In addition, 2D platforming games typically
associated with PC can vary in their complexity, with Com-
mander Keen de�ned as NP-Hard while both Prince of Per-
sia and Lemmings are P-SPACE-complete [4, 16]. In addi-
tion, e�orts have been made to construct an ontology from
which conclusions as to the di�culty and hardness can be
established from the mechanics of a give game [15]. We refer
to the theorems established in these papers for our analysis
of Spelunky, given that its mechanics are largely inuenced
by these existing works.

3. SPELUNKY
Spelunky (Figure 1) is a 2D platforming game where the
protagonist must complete a series of maps through increas-
ingly hostile environments. As is suggested by the title, the
player takes control of a spelunker avatar and upon entering
the game, must delve deeper into the underground caverns
to ultimately win their freedom.

Spelunky was originally released in 2009 as a freeware game
developed in the GameMaker engine for Windows PC plat-
forms by Derek Yu [17]. The game has since been rebuilt
in the C++ language with enhanced graphics and is avail-
able on a variety of gaming platforms, such as PC, Mac
OS, Sony PlayStation and Microsoft Xbox consoles. The
full project and source code for the original, often referred
to as Spelunky Classic, is available from Yu’s video game

2While the scope of platformer games that exist is fairly
broad (Spelunky being one of them), we denote traditional
platformers to be extending from the design templates es-
tablished by the highly popular Super Mario Bros. series

Figure 1: A screenshot from Spelunky Classic, where the
player is currently navigating through ‘The Mines’ (world
1).

Figure 2: The scoreboard for a given playthrough after com-
pleting the �rst level. Note that the game records both time
and dollar value of all treasures found.

company Mossmouth [17]. It is important to recognise that
while there are two di�erent implementations of the game
the di�erences in mechanics are relatively minor and in most
instances changes to the later version, known as Spelunky
HD, make the game more challenging for the player. There
are slight variations in control, but these do not cause a
fundamental change to the gameplay mechanics.

In order to fully explore the challenges of Spelunky, this sec-
tion will focus on the overall structure, core mechanics and
particular features of the game that will prove relevant later
in this paper.

3.1 Goals & Objectives
Despite the emphasis on money, a signi�cant portion of the
community that Spelunky has fostered often ignore the score
and instead focus on the overall time taken to complete the
entire game. While time taken is noted throughout a players
progress, it is not recorded as the actual score of the game.
However, while there are communities of players who aim to
attain the highest score, there is an equally large online com-
munity who focus on achieving ‘speed-runs’, which attempt



Figure 3: The golden idol is a special treasure that must
be taken either to a level exit or a shopkeeper in order to
be redeemed for dollar value. However, picking it up often
causes environmental traps to spring.

to complete the game as fast as possible3.

3.2 Game Structure
The world of Spelunky is separated into levels, which the
player will typically enter from somewhere at the top. In
order to proceed to the next level, the player must �nd the
exit which is often hidden near the bottom 4. It is not made
apparent to the player where these exits are and they must
explore the environment in order to �nd them. In addition,
this issue is compounded by both mutators that impact the
level as well as how levels are constructed. These issues are
discussed in section 3.4.

A typical run of Spelunky requires the player to complete
four worlds comprised of four levels each: ‘The Mines’, ‘The
Jungle’, ‘The Ice Caves’ and ‘The Temple’. The last of these
sixteen levels, level 4-4, is referred to as ‘Olmec’s Lair’ and
requires the player to defeat the �nal boss in order to com-
plete the game.

It is important to note that upon completing a given level,
the player does not have the option to return back through
the door they travelled from. As a result, players must con-
tinue to head towards the �nal objective and cannot back-
track to acquire items they may have seen in previous levels.

In addition, the ‘typical’ run as noted earlier is one of a
number of routes that can be taken to complete the game.
We briey summarise these variants.

3.2.1 Hidden Areas

There are multiple hidden areas to be found in both versions
of the game. The one area that exists in both Spelunky
Classic and Spelunky HD is the ‘City of Gold’: a hidden level

3At the time of writing YouTube user ‘Pibonacci’ holds the
world record of 1:55.353 which can be seen at https://www.
youtube.com/watch?v=rgCovly4uz4
4This sole exception to this is the hidden ‘Mothership’ level
in Spelunky HD that if discovered replaces level 3-4. In this
instance players begin at the bottom and must work their
way to the top.

that typically replaces a segment of the fourth world known
as ‘The Temple’. This environment is built entirely of gold,
allowing the player to attain a massive increase in score.
However, the City of Gold is only one of six hidden areas
found in Spelunky HD5. Access to these hidden areas proves
highly taxing given that hidden exits and special items must
be found in order to reach them, with similar challenges
found within the hidden areas themselves.

3.2.2 Shortcuts

It is possible to skip parts of the game in order to ease
the challenge of the overall game. An assisting non-player
character known as The Tunnel Man, will often greet the
player upon completion of worlds 1 through 3, o�ering to
create a shortcut that allows the player to skip all levels up to
that point in future play. In order for a shortcut to be built,
the player must provide a mixture of items and money to the
Tunnel Man. The total cost of each path varies with each
shortcut and payment is cumulative over time, allowing the
player to eventually unlock a given shortcut if they continue
to pay him. Once built, each shortcut is permanent and the
player can use it at the beginning of a new game to avoid
one or more worlds. However, it is important to note that
using these shortcuts renders the subsequent play invalid
for leaderboard scores. As such, many challenges6 both in
the Spelunky game itself and within the player community
forbid the use of shortcuts.

3.3 Core Mechanics
Spelunky ’s basic gameplay mechanics are similar to those
of popular 2D platformers such as Super Mario Bros. [9]
and Sonic the Hedgehog [13]. Allowing for the player to con-
trol the Spelunker avatar by walking, running and jumping
across the environment. However, unlike the more popu-
lar examples, there are mechanics that distinguish Spelunky
from its peers. The avatar shares a feature found within Prince
of Persia in that the player can grab onto ledges if they are
within proximity and cannot reach the top of a given plat-
form. However, unlike Prince of Persia, the player cannot
simply climb up to the platform and must instead jump to
gain su�cient height to reach their goal.

Like Mario, the Spelunker can incapacitate or kill certain
enemies by jumping on their head. While most enemies can
be defeated by jumping on them, others may require the use
of a weapon, such as the whip which is provided at the start
of play. In addition, the player can pick up and use a variety
of items that are provided throughout play to access hard
to reach areas of eliminate enemy characters faster.

3.3.1 Items

What separates Spelunky from other popular 2D platform-
ers is the ability to acquire and use items. In Spelunky clas-
sic, there are 43 di�erent items that the player can use,
with Spelunky HD extending this total to 51. These items
fall under a number of categories:

5The complete set of hidden levels is comprised of The City
of Gold, The Black Market, The Haunted Castle, The Moth-
ership, The Worm and the secret 5th world entitled ‘Hell’.
6Both achievements delivered in Steam, PSN or Xbox Live
as well as challenges to unlock secret items.



Consumable Items that can only be used one time. Each
item has a limit on how many the player can carry.
While items such as bombs and ropes can be carried
in large quantities, others have a limit of one and a
replacement must be found before they can be used
again. Consumable items can often be replenished for
cash in shops found throughout the game world. The
exception being the Egyptian artefact ‘Ankh’ which
can only be found and used once per game.

Accessories Items that once collected, are permanently
owned by the player for the remainder of their playthrough
unless they can be replaced. Typically, accessories are
worn by the avatar in order to improve the strength
and resilience of the player. For example, spring shoes
can increase jump height while the cape reduces the
rate at which the avatar falls through the air. Oth-
ers allow for improved awareness of the environment,
with the spectacles revealing treasures hidden in the
rock and the compass adding an arrow to the display
which permanently points to the location of the current
exit door. It’s important to note that if an accessory
is picked up that a�ects the same mechanic, it will be
replace the original. For example, should the player
be using a cape and then pick up a jetpack (both of
which impact in-air control), then the cape is replaced
by the jetpack and a new cape must be found if the
players wishes to use it.

Weapons Weapons must be picked up by the player in or-
der to be used. Melee weapons such as the whip and
machete are close-range with varying damage and not
useful against distant enemies. This is addressed cour-
tesy of ranged weapons such as the boomerang and
shotgun. Players can also adopt items as makeshift
weapons by throwing them at enemies. Ironically, play-
ers cannot throw weapons at enemies and can only pick
up and drop them.

3.4 Level Design
One large element of the challenge in Spelunky is that each
level is driven by a procedural content generation algorithm,
i.e. each level is built algorithmically at runtime, with some
examples shown in Figure 5. This has a large impact on
the perceived di�culty of the game for human players given
the PCG ensures that the player never plays the same level
twice (or rather, it reduces the probability of such an oc-
currence to be extremely unlikely). Despite the adoption
of a PCG system, this issue is not as signi�cant as is often
perceived, given that the PCG system adheres to a strict
series of rules in its construction that ensure a solution path
exists for all generated instances. This element is further
elaborated upon in section 4. This paper relies upon the
authors own examination of the publicly available source
code in conjunction with the excellent overview provided by
Kazemi found in [6].

Once a level is established, it is populated from a collection
of potential enemies. The range of enemies is broad given
many are only encountered should the player visit partic-
ular worlds of the game. As a result, there are 25 di�er-
ent kinds of enemy in Spelunky classic, with the HD con-
version extending this count to over 50. Enemy di�culty

Figure 4: The shopkeeper allows the player to exchange
money from treasures for speci�c items available in the store.
These items change in each shop instance.

and strength varies, with some exhibiting simple pattern pa-
trols or behaviours, while others actively pursue the player
should they enter a given range. The outlier in this case
is the ‘Shopkeeper’ a NPC responsible for manning stores
that players visit to buy new items shown in Figure 4. The
Shopkeeper remains friendly towards the player unless they
either attack or attempt to steal from him. This results in
the NPC becoming overly aggressive towards the player. In
addition, this has a knock-on e�ect of making all subsequent
Shopkeepers encountered in the game antagonistic towards
the player and the level generator will place additional Shop-
keepers near future level exits.

4. COMPLEXITY ANALYSIS
The focus of our analysis is to establish what is the most ac-
curate classi�cation of Spelunky. As discussed in [15], most
titles that are deemed interesting for a human to play are
typically found within the range of NP-complete to PSPACE-
complete. As such, we are aware of the bounds in which Spelunky
may be found within. For this analysis, we rely upon the pre-
established meta-theorems discussed in [15] and the frame-
work for proofs for other 2D platforming games found in [2].
Following from this work, we construct scenarios that can
occur in the game world that provide evidence of our theo-
rems. These examples should hold for a generalised version
of Spelunky. This is achieved by constructing particular sce-
narios using the built-in level editor of Spelunky Classic.

4.1 Existence Within PSPACE
It is important to acknowledge at this stage that both ver-
sions of Spelunky exist within PSPACE. This is established
quite easily courtesy of discussion raised in [2], which states
that generalisations of commercial single-player games are
likely to exist within PSPACE. This is further corroborated
in [15] courtesy of Savitch’s theorem [10], given that enemies
in Spelunky exhibit either deterministic or simple pseudo-
random behaviour and that each level con�guration can be
stored in linear space.

4.2 Environment Traversal
We begin by considering the need in Spelunky to navigate
the environment in order to reach an exit door. By adopting



(a) A level where the player must cross 10
`rooms' built by the generator.

(b) A level with incentive to explore cour-
tesy of a golden idol in the centre.

(c) An procedurally generated level that
has a `snake pit' at the bottom.

Figure 5: A collection of procedurally generated levels, where the main solution path is constructed (faintly visible as a red
line), before `padding' the rest of the world accordingly. These screenshots recorded courtesy of the tool developed in [6].

Figure 6: An example that satis�es the assertion of Theo-
rem 1, whereby the spelunker must a single-use pathway to
reach the exit.

Metatheorem 1 listed in [15], we can establish the following
theorem:

Theorem 1. The existence of both location traversal and
single-use pathways classify Spelunky as NP-Hard.

We can provide proof of this theorem courtesy of a reduc-
tion from a Hamiltonian cycle. Whereby nodes are locations
the player must visit and edges are the single-use pathways
that exist between them. Spelunky exhibits both traits: the
former is achieved not only by the need for the player to
discover the valid path through the level, but also the desire
to collect gold in order to increase their score. Meanwhile
the latter trait is exhibited in circumstances whereby the
player can no longer reach a previously established area of
the level.

If we consider the scenario shown in Figure 6 where the
avatar must fall down a large drop while having only two
units of health. Given the height, the spelunker will survive
the fall but only have one unit of health remaining. Since

Figure 7: An example that satis�es the assertion of The-
orem 2, the spelunker must use a collectible token (a
parachute) in order to cross a `toll road' that exists in the
game or face certain death.

the player is not carrying any items to help climb back up,
this maintains the case of single-use pathways.

Our theorem need not concern itself with whether a solution
path exists in the context of a regular Spelunky game, given
that one is always guaranteed by the generator. If we view
the level space as a 4� 4 grid, the generator will navigate each
`room' in the grid until a solution-path is constructed from
the starting position in the top row, to the exit door, which
will be placed on the bottom row. Only once a solution-
path has been built are side rooms with no exits built into
the environment [6]. As shown in Figure 5 this can result
in solution paths of varying lengths. While the lower bound
for this can be established as four rooms, it is noted in [6]
that such solutions, which would require multiple top and
bottom exits, typically result in a `snake pit' as shown in
Figure 5c, as the generator attempts to force a larger path
to be constructed.


