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ABSTRACT

Given the growing popularity of video gaming and off-the
shelf electroencephalographic (EEG) devices like the Emo-
tiv, there is a growing need for methods of measuring gamer
experience in real-time. Engagement indices developed to
monitor human engagement have yet to be implemented
with the Emotiv. In this study, we compared three differ-
ent engagement indices during various video game modali-
ties using the Emotiv device. EEG data was collected from
30 participants during video game play of Super Meat Boy.
Two EEG indices (frontal theta and the ratio of beta to
alpha+theta) showed a significant difference in engagement
level among the different gaming modalities with the in-
creasingly difficult cognitive demand. Our findings suggest
that the Emotive EEG can be to measure a player’s varying
levels of engagement as they play a video game.

1. INTRODUCTION
Recent approaches to psychophysiological computing have

applied psychophysiological modeling to interactive video
games [17]. Electroencephalography (EEG) provides a means
of accessing and recording neural activity, allowing a com-
puter to retrieve and analyze information from the brain-
wave patterns produced by thought. EEG has been shown
to have the capability to measure player experience [23].
Beta rhythm has been shown to increase with attention and
vigilance in general [13] and during video game play specifi-
cally [21]. Salmin and Ravajja [21] used EEG to isolate spe-
cific game events from the EEG data. Nacke et al. [14] also
showed that EEG data could be used to determine player ex-
perience across entire level designs. Whilst there are many
beneficial EEG applications, much of this technology has yet
to leave the research lab because the majority of current re-
search uses medical EEG devices which are expensive, bulky,
and require skilled technicians to operate them.

New technology has resulted in inexpensive consumer-
grade devices that are designed for novice user to be able

to use. An example of this is the Emotiv EPOC, a compact,
wireless headset that requires comparatively little effort to
set up and allows much greater flexibility and mobility than
traditional EEG. The EPOC was aimed at the gaming mar-
ket and is not classified as a medical device. Researchers
have investigated different EEG processing algorithms to as-
sess classification of shapes being thought about [8], detec-
tion of hand movement intentions on the same side of the
brain as the hand [9], classification of positive and negative
emotion elicited by pictures [18], and evaluation of cogni-
tive workload [1]. The system has been found to work well
for detecting events when the participant is told to picture
various stimuli [8].

Although the Emotiv EEG does not have the fidelity of a
laboratory EEG it still offers the ability to provide a gamer’s
brain wave signature. Duvinage et al. [7] compared the Emo-
tiv headset to the Advance Neuro Technology (ANT) acqui-
sition system during a run with the P300 speller system.
Although the Emotiv headset was not found to be as accu-
rate as the ANT system (a medical grade device), it was able
to capture EEG signal at a successful level that was deemed
adequate for games. With the benefit of being noninvasive
to the wearer, it is a tool that is practical for use by game
developers.

1.1 Measuring Engagement from EEG
Using EEG to measure task engagement is not a new con-

cept. It has been widely used with medical grade EEG de-
vices. Pope et al. [19] built a system to control the level
of task automation based upon the whether the operator
had increasing or decreasing engagement. Task engagement
and mental workload are areas that Berka et al. [4] explored
as a way to help identify more accurate and efficient meth-
ods for people to interact with technology with the possi-
bility of developing more efficient work environments that
increase motivation and productivity. Their results suggest
that EEG engagement reflects information-gathering, visual
processing, and attention allocation.

Smith and Gevins [22] used a flight simulator to subject
participants to low, moderate or high difficulty tasks to see
how the brain responded. The results from their study
showed an increased frontal theta response along with re-
duced parietal alpha during demanding tasks. Other work
[15] had similar results indicating that an increase in theta
and a decrease in alpha was correlated with increased num-
ber of tasks along with amount time a persons is awake.
Yamada [24] measured frontal theta activity along with eye
blinking and found that children playing video games had
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higher theta activity along with a high degree of blink in-
hibition. These results suggest that interesting tasks result
in higher frontal theta activity while the task inhibits eye
blink activity. Recently, Kamzanova et al. [12] compared
the sensitivity of various EEG engagement indices during
time-on-task effect and cueing to detect which index was
most effective for detecting reduced alertness linked with
vigilance decline in performance.

Few studies have approached measuring player engage-
ment with off-the-shelf technology while playing video games.
The current study aimed to assess user engagement while
playing video games using the Emotiv EEG. Specifically, we
aimed to 1) compare three engagement indices during video
game modalities to show which one the Emotiv is most com-
patible with; and 2) compare video game events (e.g., death
of a character) to analyze changes in player engagement lev-
els.

2. METHODS

2.1 Participants
EEG data was collected from 30 healthy participants (66%

female, mean age = 20.87, range 18 to 43). Participants were
recruited from undergraduate and graduate schools; educa-
tion levels ranged from 13 to 20 years. Ethnicity was as fol-
lows: Caucasian (n=20), African American (n=1), Hispanic
(n=4), Native American (n=1), and Asian Pacific (n=4).
Participants reported they used a computer at least once
every day with 30% saying they used the computer several
times a day. 66% participants rated themselves as expe-
rienced, 27% rated themselves as somewhat experienced,
and 7% rated themselves as very experienced when rank-
ing their computer competency. Homogeneity of the sample
was found in that there were no significant differences among
participants relative to age, education, ethnicity, sex, and
self-reported symptoms of depression.

Strict exclusion criteria were enforced to minimize possi-
ble confounding effects of comorbid factors known to ad-
versely impact cognition, including psychiatric conditions
(e.g., mental retardation, psychotic disorders, diagnosed learn-
ing disabilities, attention deficit/hyperactivity disorder, and
bipolar disorders, as well as substance-related disorders within
2 years of evaluation) and neurologic conditions (e.g., seizure
disorders, closed head injuries with loss of consciousness
greater than 15 minutes, and neoplastic diseases). All par-
ticipants were right handed and had at least average com-
puter skills. Game playing skills ranged from casual cell
phone games to playing every day on a personal computer
or a game console. The participants received class credit for
their participation in the study.

2.2 Apparatus

2.2.1 Super Meat Boy

Super Meat Boy1 is a platform game in which players con-
trol a small, dark red, cube-shaped character named Meat
Boy jumping around the level avoiding saw blades to reach
their goal of rescuing bandage girl. This game requires a
minimal amount of keys to play (arrow keys and space bar)
thus making it easy for any level of gamer to achieve success.
Major events in the game include successfully completing a

1http://supermeatboy.com/

level and death. Death can occur from many sources includ-
ing running into spinning saw blades, falling into fire, falling
into acid, or getting skewered on needles. As the player pro-
gresses through the game the levels get increasingly difficult
through the addition of more saw blades and large jumps.
Each level is timed. The player must get through each level
as fast as possible.

The core gameplay requires fine control and split-second
timing. Primary game events used for this study included:
1) Death events; and 2) “General Game Play”. The “Death
events” occurred when the participant’s character died. Al-
though there are a number of possible ways for a character
to die in a game, we sampled from death events related to
the character falling into acid. The “General Game Play”
was differentiated from “Death events” in that general game
play was sampled during periods in which the player had
not experienced any death events for 1 minute before or af-
ter “General Game Play” sampling.

2.2.2 The Emotiv EPOC EEG

This Emotiv EEG headset has 14 electrodes (saline sen-
sors) locating at AF3, AF4, F3, F4, F7, F8, FC5, FC6,
P7, P8, T7, T8, O1, O2 and two additional sensors that
serve as CMS/DRL reference channels (one for the left and
the other for the right hemisphere). The Emotiv EEG’s 14
data channels are spatially organized using the International
10–20 system. The Emotiv EPOC headset does not require
a moistened cap to improve conduction. The sampling rate
is 128Hz, the bandwidth is 0.2-45Hz, and the digital notch
filters are at 50Hz and 60Hz.

2.3 Procedure
Upon arriving at the testing office, the participants were

given an informed consent form to read and sign, including
a waiver to record the participant during the study. The
participants were then seated in a comfortable chair and
given a keyboard and mouse to complete a questionnaire
about computer and game experience.

For the actual assessment, each participant played the
game in the same room location. The game was displayed
on a Samsung 60 inch plasma screen. The participants sat
in a chair that has a built in keyboard tray, along with a
speaker system and USB port around head level to mini-
mize the distance between the Emotiv headset and the re-
ceiver/transmitter.

While the participant played the game the lights were
turned off to help immerse the player into the game and
reduce glare from the overhead lights. The experimenter
combed the participants on the left, mid-line, and right sides
of their scalp firmly in order to reduce electrode impedances.
After the relevant areas on the face and mastoids had been
cleaned, the Emotiv EEG headset was positioned on the par-
ticipant’s head. The examiner verified impedances in con-
nections between each electrode and the participant’s scalp.

During the Super Meat Boy Task the researcher aided the
participant with the first few levels to allow the player to
become acquainted with the rules and game controls. Next,
participants were informed that they would play Super Meat
Boy for 15 minutes and that they were to advance as far as
they could in the game.

Each participant’s game play was captured in 1080p HD
(60 frames per second) using a Hauppauge video capturing
device allowing the game play to be synced the EEG data.



Each participant was also recorded using a Logitech 9000 HD
webcam to help isolate events (facial or body movements)
that may affect the EEG data. EEG data and video data
were recorded on the same computer with all non-essential
programs closed. Using OpenViBE drift correction, a 128
Hz sample rate was achieved minimizing any syncing issues
between the EEG data and the video recording of game play.
Syncing all video recordings with EEG recording software
involved the use of screen captures before and after every
section of the study (baseline video and game play). Each
screen shot produced a time stamp for EEG data and video
to establish the location of the start and end of each section.
The screen shots were saved to reference later during the
data analysis phase.

2.4 Data Analytics
All data were analyzed using SAS version 9.1. Descriptive

statistics were calculated for participant demographics and
for EEG results . Missing data were imputed by either mean
substitution or last case carried forward.

The Emotiv Epoc headset was used to capture the EEG
data from each participant. Emotiv TestBench and Open-
ViBE were used to capture the raw EEG output from the
headset. The EEG data was segmented into epochs that
started 100 ms before the onset of each stimulus (0 ms), and
ended 750 ms after the onset of the same stimulus. Epochs
were calculated for General Game Play and Death events.

Artifacts such as blinking, head movements, or body mov-
ement can cause unwanted data in EEG data. Most EEG
analysis requires removal of these artifacts to help identify
medical issues. However this is not necessarily a detrimental
issue when using for game play analysis. These types of
artifacts are common in everyday game play [6, 16]. They
can actually be used for further analysis as body movement
or other movement can signify engagement [5].

The EEG data was annotated as artifact where visually
noticeable deflection in the EEG was observed at the times
that participants performed movements. Artifacts related
to eye blinks and other muscle movements in addition to
physical movements of the sensors themselves were removed
before the EEG traces were processed. The Emotiv SDK
automatically detects and records eye blinks. Given that
muscle contraction and control are generally governed out-
side of the frequency range of interest [20], we were able
to use frequency band limiting procedures such as low-pass,
high-pass and notch filters to adequately remove these signal
components.

As Anderson et al. [2] describe, after removing EEG arti-
facts the researcher may assess whether the energy densities
of the alpha or theta frequency bands are changed by more
than 20% of their original values. If so, the trial should be
removed from all further analysis. In this study, we did not
need to throw out any of the trials due to excessive signal
degradation from movement or excessive change in spectral
densities.

The power estimates (µV2) were found using a fast Fourier
transform (FFT) and a 1 second Hamming window with no
overlap for Delta (1 – 4 Hz), Theta (4- 7 Hz), Alpha (7 -13
Hz), Beta (13 – 25 Hz) and Gamma (25 – 43 Hz) for all
14 sensor location on the Emotiv headset. In typical EEG
studies the number of channels ranges from 32 channels (for
routine exams) up to 256 channels (for source estimation),
and the systems are able to sample at up to 1000Hz. Given

that the Emotiv has only 14 channels and the data sample
rate is only 128Hz, the average was calculated across all 14
sensors to obtain a global average for each frequency band.
Following Anderson et al. [1] the baseline and stimulus sig-
nals were transformed to determine the power change and
frequency shift induced by the task. These values are used
to calculate the cognitive processing experienced at each of
the 14 sensors for a given task. The spatial averaging of the
14 values gives a single measurement for analysis.

Measuring engagement level is one part of determining
a player’s experience while playing a video game. Pope et
al. [19] have shown that an engagement index can be cal-
culated by taking the ratio of the (Beta/(Alpha + Theta)
[Index 1] EEG bands (see Table 1). Berka et al. [4] was
able to show that the engagement index reflected a per-
son’s process of information-gathering, visual scanning and
sustained attention. Gevins and Smith [11] introduced a
different task engagement indicator that looks at the ra-
tio of frontal midline theta activity to parietal alpha loca-
tions Frontal Theta/Parietal Alpha [Index 2]. A third index
was identified by Yamada [24] that looks at activity at the
Frontal Theta [Index 3] sites which indicate increased atten-
tion. Kamzanova et al. [12] compared these indices across
time-on-task effects and workload manipulation with their
findings indicating that there is a difference between tasks
that are cued versus uncued tasks.

Table 1: EEG Indices

Indices Brainwave Bands Notes

Index 1 Beta
Alpha+Theta

Averaged across all sen-
sor locations [4, 10, 19].

Index 2 Theta
Alpha

Average frontal midline
theta and average pari-
etal alpha [11, 22].

Index 3 Theta
Averaged frontal theta
[24].

• Index 1 (Beta/(Alpha + Theta)) was calculated for
each participant using the single measurement form
all sensors.

• Index 2: (Frontal Theta/Parietal Alpha) was calcu-
lated by using the Theta average at frontal lobe lo-
cations F3, F4, FC5, FC6 and dividing them by the
Alpha averages at the parietal locations P7, P8.

• Index 3: (Frontal Theta) was calculated using the aver-
age of the following frontal lobe locations: AF3, AF4,
F3, F4, F7, F8, FC5, FC6.

Each index calculation produced an engagement level for
general game play and death events.

2.5 Results
We completed a repeated-measures analysis of variance

assessment (ANOVA) across the 3 indices and general game
play and death events from Super Meat Boy. Results from



the repeated measures ANOVA using indices as the within-
subject factor for dependent variables general game play and
death events revealed a significant difference for the main
effect. These results represent the difference in the formulas
used to calculate the index of engagement ratio.

Follow-up tests of repeated within-subject contrasts re-
vealed difference in between general game play and death
events within each index. Index 1 engagement levels dur-
ing death event was significantly increased in comparison
to general game play (t(1,29) = 2.720, p = 0.011). Index 3
also showed increased engagement levels during death events
in comparison to general game play (t(1,29) = 2.485, p =
0.019). Index 2 did not yield any significant results between
general game play and death events.

3. DISCUSSION

3.1 General Overview of findings
Our goal was to assess various engagement indices drawn

from the off-the shelf Emotiv during video gameplay. We
aimed to ascertain which index is preferable given time for
calculation and prediction of game events. Specifically, we
used the Emotiv to analyze differences in engagement levels
between specific game events (general game play and death
events). The primary results were: (a) significant differ-
ences were found among the three indices; (b) significantly
increased engagement levels were found during death events
compared to general game play events when using Index 1
(Beta/(Alpha + Theta)) and Index 3 (Frontal Theta).

3.2 Engagement indices finding
Our findings suggest that when using the Emotiv EEG

headset Index 1 (Beta/(Alpha + Theta)) is the preferred
algorithm for calculating the engagement levels of players
playing video games. Using Index 1 comes with a lower
overhead compared to the other two indices. This is pri-
mary due to the fact that Index 1 allows the use of global
band waves from all the sensor channels that the headset
produces, whereas the other two indices require calculations
based on data from specific individual sensors. The global
band wave approach has another added benefit that it will
reduce noise that may come from an individual sensor lo-
cation when using Index 2 or Index 3. Furthermore, The
Emotiv sensors may not have the resolution to support in-
dividual sensor measurements that Index 2 requires for cal-
culating engagement levels.

Higher levels of engagement during death events when
compared to general game play may not suggest the user
is more engaged when their character dies, but rather may
reflect that they have entered a more stressful state that has
increased their vigilance [4, 12, 24]. Putting thresholds on
individual players engagement levels based upon their base-
line results would help identify when players have entered a
stressful state and identify from there EEG signal when a
death event has occurred.

3.3 Limitations and future directions
Our findings should be understood in the context of some

limitations. The first is that they are based on a fairly small
sample size. As a necessary next step, the reliability and
validity of the Emotiv EEG needs to be established using
a larger sample of participants to ensure that the current
findings are not an anomaly due to small sample size.

Our findings need further validation through straightfor-
ward comparison of Emotiv EEG results with those of stan-
dard laboratory-based EEG technology. It is important to
note, however, that the Emotiv has been favorably compared
to a laboratory-based research EEG system (Neuroscan).
Badcock et al. [3] found that the Emotiv EEG system can
be a valid alternative to laboratory ERP systems for record-
ing reliable late auditory ERPs over the frontal cortices.

While we have found some interesting results, it is impor-
tant to emphasize that these are very preliminary. Although
there are not currently well-established methodologies for
examining the impact of game levels on players, there is
an increasing body of literature suggesting that game im-
pact can be measured via EEG [14, 21]. Future studies will
be needed to expand these results into methodological ap-
proaches to quantifying videogame based EEG assessment in
general and Emotiv–based EEG assessment of video games
in particular.

4. CONCLUSION
We have presented finding from a study aimed at compar-

ing different engagement indices with the use of the Emotiv
EEG headset. We also aimed to analyze engagement levels
between specific game events (general game play and death
events). We were able to find significant higher levels of
engagement during death events when compared to general
gameplay suggesting a higher level of arousal. Our findings
suggest the Emotiv EEG can be used to assess varying levels
of engagement as game players experience varying gaming
events. Using an averaged band wave from all sensors within
Index 1 (Beta/(Alpha + Theta)) provided the best solution
as it has lower overhead for implementation along with the
benefit of mitigating noise from individual sensor locations.

It is important to note that these findings are based on
a fairly small sample size and future studies will be needed
to expand these results into methodological approaches to
quantifying videogame based EEG assessment in general and
Emotiv–based EEG assessment of various games in partic-
ular. Nevertheless, these results support the idea that the
Emotiv EPOC headset is a low-cost tool that has the po-
tential to assess player experience during game play.
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