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ABSTRACT
Learning models of player behavior has been the focus of several
studies. This work is motivated by better understanding of player
behavior, a knowledge that can ultimately be employed to provide
player-adapted or personalized content. In this paper, we propose
the use of active learning for player experience modeling. We use a
dataset from hundreds of players playing Infinite Mario Bros. as a
case study and we employ the random forest method to learn mod-
els of player experience through the active learning approach. The
results obtained suggest that only part of the dataset (up to half the
size of the full dataset) is necessary for the construction of accu-
rate models that are as accurate as those constructed from the full
dataset. This indicates the potential of the method and its benefits
in cases when obtaining the data is expensive or time, storage or
effort consuming. The results also indicate that the method can be
used online during the content generation process where the mod-
els can improve and better content can be presented as the game is
being played.

1. INTRODUCTION
Providing entertaining content is the ultimate goal of game design.
Consequently, predicting player preference is considered to be one
of the main tasks of AI in games and its importance is a clear-
cut in several applications. Player modeling [43] is one way to
capture how player behavior is related to her preference. Building
such models however requires collecting representative and mean-
ingful player information. Most of the approaches used for this
task use machine learning techniques that learn from player behav-
ior datasets annotated with player experience tags. While accurate
models can be constructed using such methods, the process of de-
signing the data collection surveys and gathering the needed in-
formation is time and effort consuming. Moreover, the stages on
which the process flows are usually predefined and the data col-
lection process usually continues up to a certain point when the
analysts assume the dataset is rich enough to start conducting ex-
periments. If, after running some analysis, this turns out not to be
the case, data collection continues and the process is repeated.

One would argue that we are in the age of data where we have

access to a vast volume of game logs. Most of the data available
however is noisy, dirty, and it does not provide information about
players’ feedback. Labeling game logs is usually unfeasible and
selecting part of the data to be manually labeled could be biased as
it might not preserve the true distribution of the classes. Due to this
limitation of manually or randomly selecting instances methods,
an efficient method for unlabeled instance selection is required. If
the method is able to identify instances to be labeled we could po-
tentially speedup the learning process and reduce the amount of
data required for labeling. Moreover, data collection and model
construction could be run simultaneously ensuing enough data and
accurate models before terminating the data gathering process.

From a game design point of view, the process of intelligently se-
lecting the instances to learn from could be very beneficial within
the game creation process; an initial average model of player from
a relatively small set of data can be built and gradually improved
by inquiring the player about feedback on certain, carefully cho-
sen instances. This information can be seeded in the game creation
process leading to the creation of better content.

The field of procedural content generation [29] has been relatively
well explored and so is the field of player modeling [2]. Closing
the loop between these two areas however is an important imma-
ture research direction with many exciting potentials [43]. This pa-
per presents a step towards this goal by proposing a system that can
be ultimately used for content personalization. We propose the use
of active learning methods for the construction of accurate estima-
tors of player experience driven by the in-game interaction. Active
learning promises the possibility of learning accurate models from
a small set of annotated data and effectively presenting content for
labeling based on how much information is learned about a spe-
cific player. We present the method and we analyze its efficiency
in terms of the data needed and the modeling accuracy. We finally
present our vision of how the method can be employed during the
content generation process.

2. PROCEDURAL CONTENT GENERATION
AND PLAYER-DRIVEN PCG

Procedural content generation (PCG) has witnessed increasing at-
tention in commercial games such as Diablo and Spore. The Search-
based Procedural Content Generation [39] paradigm, which uses
global stochastic search algorithms has been used for evolving dif-
ferent aspects of game content (e.g. levels [28, 35], weapons [8],
tracks [37] and rulesets [38] as well as complete games [5]) for
various game genres.

The generation of personalized content is becoming an important
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trend within PCG. Personalized tracks [36] and weapons [8] have
been evolved relying on different variations of theories of fun. Em-
pirical models of player experience that approximate the relation-
ship between player behavior and game content have also been in-
vestigated [32, 27]. The ultimate aim of constructing the models is
to permit a data-driven mechanism of adjusting the game to indi-
vidual player taste [34]. While this research direction is interesting
and could potentially improve player experience if applied in real-
time, the current approaches to player modeling and game adapta-
tion has so far suffered from major limitations: (1) data needs to be
collected from a large number of players, the data should prefer-
ably include information about the game content, player behav-
ior, player’s feedback (gathered through subjective and/or objective
measures) and perhaps demographics information. This process is
usually time and effort consuming. (2) models of player experience
are usually built offline and later used to estimate player experi-
ence. This means that the outcomes of the models are approximate
estimations of the experience based on the training data. (3) This
also mitigates the ability of generating personalized models as the
models are fixed before shipment. (4) Optimizing aspects of player
experience have usually been limited to a small predefined set of
content aspects and (5) the selection of game configurations from
which to gather the data has so far not been optimized for efficient
model learning and is not influenced by player behavior of prefer-
ences.

3. ACTIVE LEARNING
Active Learning (AL) refers to a set of methods where the learning
algorithm is allowed to select the data to learn from. The selec-
tion is based on the learning gain and therefore the main advantage
of these methods is that they significantly reduce the amount of
data needed for training [23]. AL methods are usually employed
to build models in situation where data needs to be annotated and
the annotation process is expensive (usually requires enquiring a
human) or in situations where reducing the number of experiments
to run is beneficial [15]. AL attempts to overcome the annotation
bottleneck by effectively selecting a number a unlabeled instances
to be labeled hence achieving high accuracy using as few labeled
instances as possible. The methods are gaining rapid interest, as
they allow one to build an optimal training set with a minimum of
queries (or labeled instances). The method has successfully been
implemented in a wide range of applications such as image clas-
sification, information extraction and speech recognition [40, 25,
42].

Active learning is well-motivated in the game domain (such as
in many other machine learning fields) where player data may be
abundant (as we are in the “age of data") but the data is noisy and
labels are scarce or expensive to obtain. Yet the use of this method
has so far been limited to very few, yet interesting, examples. Zook
et al. [44] applied AL methods to tune the game parameters so that
they best meet players’ preferences. Their system aimed at provid-
ing feedback for game designers during the game design process
and the investigations were limited to three content parameters.
Normoyle et al. [15] employed AL to select the content configu-
rations that help better design and track of player metrics. The
approach however has not been implemented yet to model player
experience, i.e. to construct models of players experience that ef-
fectively capture the relationship between the content of the game
and the players’ behavior.

4. THE BIG PICTURE: ACTIVE LEARNING
AND ARTIFICIAL CURIOUSITY

Artificial curiousity (AC) has been discussed in the context of gen-
erating novel solutions in an unknown environment [20]. The main
idea behind achieving a computational model of AC is the use
of general reinforcement learning to “maximize not only external
reward or achieving goals such as the satisfaction of hunger and
thirst, but also intrinsic reward for learning a better world model,
by creating/ discovering/ learning novel patterns in the growing his-
tory of actions and sensory inputs” [21].

Increasing the diversity of the individuals in a population or aban-
doning objectives in the search [9, 7] are two well-known methods
implemented in the field of evolutionary computation with the pur-
pose of generating novel solutions to a given problem. Algorithms
from the field of active learning can be used to guide the learn-
ing process towards finding “interesting” patterns to learn from and
reduce the processing cost by giving the algorithm the ability to
choose the learning data [20]. In this sense, the algorithm can be
regarded as being “curious" about its user. The idea is inspired by
the exploration mechanisms employed by children driven by so-
cial learning such as emulating and imitation and intrinsic motiva-
tion [16] which drives curiousity in humans [3]. The framework
has been implemented in several domains (e.g. generating curi-
ous agents [18], building control systems [18], and developmental
robotics [19]). The definition of the framework makes it highly ap-
plicable for the creative generation of game content, or what we call
Playful Games where the feedback coming from the player consti-
tutes the external reward while intrinsic reward is given for explor-
ing surprise content. This area of research has not been explored in
the game domain yet.

5. THIS PAPER
We believe that better gameplay experience could be facilitated if
games are allowed and equipped with techniques that permit ex-
ploration of the player as the player is exploring the game. More
specifically, if the game is able to explore content configurations
that it thinks are important to learn more about the player, i.e. to be
curious about the player, it is most likely that over time the game
will be able to deliver “better” content.

This paper constitutes the first step towards building a Playful Game.
The model we propose uses active learning methods to maximize
the intrinsic reward of learning a better model of players as more in-
formation about player behavior is being collected. This model can
later be used by a curious agent together with an external rewarding
mechanism (potentially using reinforcement learning methods [21])
to ultimately build a playful game.

In terms of the advantages our method promises over traditional
player modeling and content adaptation approaches, AL methods
are widely known for their ability to handle scarce data through ef-
ficiently choosing the “important” instances to learn from. In our
context, AL permits a number of main advantages: (1) it facilitates
the construction of accurate models while reducing the number of
play testers required for data collection; (2) because AL works with
small datasets, it is easer to be embedded in an online adaptation
mechanism— in this scenario, the player experience models can be
adjusted based on the data coming from a specific player and new
content configurations are presented to the player that better match
her preferences— and (3) the explored content space does not need
to be limited or predefined, the method can search for the best area



in this space to explore given the player response. This permits ef-
ficient content personalization, as exploration of content variations
will be guided by the specific player’s behavior and feedback.

In this paper we focus on point one while we leave points two and
three for future work. In particular, we aim at utilizing AL meth-
ods for the construction of accurate estimators of players’ experi-
ence. Similar to existing experiments where the goal of running
additional experiments is to reduce the uncertainty in the data [15,
24], the goal of our setup is to select instances for the purpose of
reducing the uncertainty in our player experience modeling.

As we are building models of player experience averaged across all
players, we believe AL methods can be highly beneficial as they
have the advantage of identifying rare instances and consequently
ask for more information about those [15]. This means that we will
ultimately be able to converge to accurate models faster with less
training instances which also means that we are reducing the num-
ber of experiments to run while preserving the performance. To the
best of our knowledge, we are the first to explore an active learning
approach for player modeling and for content personalization.

We start by presenting how active learning works in Section 6. Sec-
tion 7 discusses our methodology to implement AL methods for
player experience modeling. For our analysis, we use a dataset
collected from players playing Infinite Mario Bros. (SMB) as our
testbed game as described in Section 8. We present and discuss the
results obtained in Section 10. And finally, we conclude the paper
and discuss future directions in Section 11.

6. ACTIVE LEARNING PROCEDURE
Building a model that learns from a given set of labeled data is what
traditional supervised machine learning algorithms usually do. On
the contrary, an active learner starts with a small training set of la-
beled instances L, and is given a degree of control that allows it to
carefully choose instances from a large unlabeled pool U and ask
an oracle Q for labeling of those. The newly labeled instance Ln

are added to the training set and the learner can then learn from
the resultant set and use this updated knowledge to select the in-
stances to query next. After adding the newly selected instance
to the training set, the learner proceeds in a standard supervised
way. By following this process, the model is improved by focus-
ing on the minimal set of labeled data that defines conflicting areas.
Consequently, the models will be accurate and have generalizable
capabilities [22, 25]. Algorithm 1 describes the general framework
of the active learning process.

Algorithm 1 Active learning framework
C= build a classification/rating model from the labeled data L
e=classification error on the testing set
while ( U is not empty and e>threshold) do

Um= get most m uncertain instance from unlabeled data U to
be labelled using the classifier C
Ln=label Um using an oracle Q
L=L ∪ Ln

C= build a classification/rating model from the labeled data L
e=classification error on the testing set

end while

In particular, a classifiers is built from the set of available labeled
data L and the error is calculated on the testing set. The AL method
then proceed by selecting a set of instances with high uncertainty
and asking an oracle Q for labels for those. The newly labeled

instances are then added to the dataset L and the process is repeated
until the error becomes smaller than a predefined threshold or when
there are no more unlabeled instances.

Several query methods have been proposed and they are usually
referred to as query strategies. Several paradigms have been pro-
posed for query strategies including uncertainty sampling, which
relies on selecting the instances with the least certainty on how they
should be labeled. Most of the proposed approaches in this cate-
gory build probabilistic models [11, 25]. There exists, however, a
number of non-probabilistic methods that also use the uncertainty
sampling for instance selection such as the work done by Lewis et.
al. [10] in which decision trees are used as classifiers and the work
by Lindenbaum et. al [12] where K-nearest neighbor is employed.
Demir et. al. [6] proposed the use of multiclass-level uncertainty
via support vector machine as a classifier to calculate the confident
values of the membership of each unlabeled instance to each class
which is then used to calculate a distance function that is used to
rate the instances.

The second paradigm is the Query-By-Committee (QBC). Accord-
ing to this approach, several models are constructed for the target
problem. Unlabeled instances are annotated by each model and the
instances with the most disagreement are considered the most in-
formative. Active learning algorithms based on boosting and bag-
ging have been proposed in several studies [13, 4, 41]. Melville et.
al. [14] proposed the use of artificial data to increase the diversity
between the classifiers, which as a result increases the disagreement
between the query instances.

The Expected Model Change (EMC) and the expected error reduc-
tion paradigms are also used where the potential influence of the
instances on the model or on the classification accuracy if they are
labelled is considered an important factor [26, 17].

In this paper, a similar approach to the one proposed by Demir
et al. [6] is used. According to this approach, the membership of
each instance to all possible classes is calculated and rated. The
difference of the memberships of the top two classes is then cal-
culated and the instance with the lowest difference (the lower the
difference the more uncertain the classification is) is the one cho-
sen to be labelled. Demir et al. [6] combines this approach with
SVM as a classification method. In our implementation however,
instead of using the SVM to calculate the confident value of the
membership of each unlabelled instance to each class, we used a
random forest. Our decision is motivated by preliminary experi-
ments that showed better performance for random forest over SVM
on the chosen dataset.

7. ACTIVE LEARNING FOR PLAYER MOD-
ELLING

In the player modeling task, models are usually built offline from a
predefined dataset collected about player behavior. This approach
has a number of drawbacks as discussed previously and a better
approach would be the online construction of the models which
also facilitates building personalized models and providing better
gameplay experience.

To implement AL for player modeling, we assume that each play
through of the game is an instance associated with a label (the user’s
rating). Consequently, we suppose we have a set of labeled in-
stances L and a set of unlabeled instances U . Following the steps
of the AL algorithm described in 1, we start by building a classi-



fication model C. Then in each iteration, we select a number of
samples from the unlabeled data to be labeled (rated) by players.
This selection is done by calculating the probabilities of the mem-
bership of each unlabeled sample to each class (a class in this case
is one of the possible values of the feedback provided by the user).
Once the instances with the highest uncertainty are identified, the
part of these instances that contain information about game con-
tent is parsed and used to generate new content instances, which
are then presented to the player who plays and provide a feedback
(label). The newly labeled instances are then added to the training
dataset and a new classification model is built from the new set.
The process is then repeated until we collect labels for all instances
or until the classification error reaches a threshold.

8. DATA DESCRIPTION
The evaluation set in our experiments consists of player data for
hundreds of players while playing a clone of the popular game
Super Mario Bros. The clone is modified to permit control over
level generation and thereafter provide different variations of con-
tent for players to experience and compare. The gameplay in Infi-
nite Mario Bros consists of moving the player-controlled character,
Mario, through two-dimensional levels. Mario can walk and run,
duck, jump, and shoot fireballs. The main goal of each level is to
get to the end of the level. Auxiliary goals include collecting as
many coins as possible, and clearing the level as fast as possible.
The player is given three lives to complete the game.

An experiment is conducted to collect data from players playing the
game. According to the original protocol followed, players are pre-
sented with a pair of two sessions that differ along one or more as-
pects of game content. After completing each level, a Likert ques-
tionnaire scheme is presented and the player is asked to express her
emotional preferences across the three different emotional states
(engagement, frustration and challenge). The likert scales from 0
to 4 representing the strength of the emotion (4 means “extremely”;
0 means “not at all”). And after playing each pair, the players were
asked to report their preferred game for the same emotional dimen-
sions following the four-alternative forced choice protocol. This
setting was followed to allow studies of different user modelling
methods from rating and pairwise preferences. In this paper, we
focus only on players’ responses provided as rating.

An executable version of the software was uploaded online and par-
ticipants were invited to play the game and answer the question-
naire. The data was collected over a period of six months where
273 unique players participated. Participants’ age covers a range
between 16 and 64 years (31.5% females).

Several representative features of player behavior were extracted
and Table 1 presents a subset of these features. The full set contains
30 features which can be found in [33]. Each game log consists of
the set of these features along with another set of content parame-
ters that capture different aspects of the game content presented to
the players.

The dataset has been extensively used in previous research for mod-
eling player experience [30, 31, 33] and as a testbed for preference
learning [1]. In this paper, we focus on modeling players’ reported
experience of frustration and challenge as they are very important
factors in game design and as we believe the results obtain can be
easily scaled to construct models for predicting reported engage-
ment (empirical evaluation however constitutes a future work).

9. EXPERIMENTAL SETUP
The complete datasets used consist of 1062 and 1258 gameplay
sessions for frustration and challenge, respectively. For model con-
struction, the dataset was split into 80% for training and 20% for
testing. Notice that in this particular case and in order to apply AL
approach on the collected dataset, we assume that labels are avail-
able for only part of the data and querying players actually means
retrieving the rates for the chosen instances from the unseen data.
Notice that this does not limit nor affect the performance of the
approach as the method will behave exactly the same if it is to col-
lect feedback online. The initial training labelled instances have
been randomly selected. As previously mentioned, the random for-
est classifier has been used to calculate the confident value of the
membership of each unlabelled instance to each class and to cal-
culate the rating error as well. The error function used is defined
as:

e(x, y) =

{
0 x = y
1 otherwise (1)

where x is the predicted rating and y is the actual rating.

10. ACTIVE PLAYER MODELING
For our experiments, we use the SMB dataset. The goal is to start
from a smaller set of data where labels (rating in our case) are avail-
able and to investigate whether the proposed AL method can be
used to effectively construct accurate models. For this purpose, we
conduct a number of experiments to investigate the general behav-
ior of the method and the best configuration for efficient modeling.

10.1 The Size of the Initial Labeled Training
Set

One of the crucial issues in active learning is the size of labeled
data, L, initially used for training. The optimal size of this set af-
fect the accuracy and the time required for the method to converge.
This size also infers the experiment design process as it defines the
minimal set size for constructing accurate models.

To investigate this issue, we conduct a study to analyze the effect
of the initial labeled data size on the accuracy of the active learning
process; we run a number of experiments where the initial labeled
data size ranges from 10%, 20%, 40% to 70% of whole set. The
AL can ask for 10 samples to be labeled in each learning iteration.
Fig. 1 presents the average modeling accuracy obtained from 50
runs of this experiment when applied on the frustration and chal-
lenge datasets. The results indicate that all models eventually con-
verge to the same small error rate. The size of the initial training
set L, however has a great impact on the amount of data to be la-
beled. Models of very small initial sizes for L (10% and 20%) ask
for more data and converge only when the size of L becomes larger
than 50% of the full data size. Models that initially use 70% of the
data, on the other hand, converge significantly faster (according to
t-test) and ask for considerably less amount of data for labeling.

As expected, there is clearly a tradeoff between the size of L, the
modeling accuracy and the modeling time. The smaller the size
the more data inquired and the slower the modeling process. At
some point in this process however, the significance of adding more
labeled instances becomes smaller than the expense of labeling it
and this point defines the optimal size of the training dataset. It
is also interesting to note that in the first three cases (using 10%,
20% or 40% as initial data) models that are as accurate as those
constructed using 70% of the data were built when the size of the
set becomes only about 50% of the full set. This suggests that one



Table 1: Subset of representative features extracted from Infinite Mario Bros dataset.
Category Feature Description

Time tcomp Completion time
tplay Playing duration of last life over total time spent on the level
tjump Time spent jumping (%)
tleft Time spent moving left (%)
tright Time spent moving right (%)
trun Time spent running (%)
tsmall Time spent in Small Mario mode (%)
tbig Time spent in Big Mario mode (%)

Interaction ncoin Free coins collected (%)
with items ncoinBlock Coin blocks pressed or coin rocks destroyed (%)
Interaction kgoomba Times the player kills a goomba or a koopa (%)

with enemies kstomp Opponents died from stomping (%)
Death dtotal Total number of deaths

dcause Cause of the last death
Miscellaneous nmode Number of times the player shifted the mode (Small, Big, Fire)

njump Number of times the jump button was pressed
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Figure 1: The average accuracies for predicting frustration ob-
tained from 50 runs for each configuration using the whole
training data (850 samples). Each configuration represents the
amount of the initial labeled data used to build the model. In
each iteration the 10 most uncertain samples are selected and
labeled.

would need only half the size of the training set to build as accurate
models as those built from the whole data.

In order to check whether this is a general trend or a specific is-
sue in the tested dataset, the same experiment is repeated for the
construction of models for predicting challenge and the results are
presented in Fig. 2. The results obtained support the claims pre-
sented previously and emphasize the importance of the initial size
of L.

It is interesting to note however that the results indicate that chal-
lenge is harder to predict than frustration as the models achieved
higher error rate and required more data to learn from.

An interesting observation is that the AL converges to the smallest
error using less than the full data available in all cases. In practice,
this means that we could terminate the process of data collection as
soon as we detect a stabilization in the behavior of the system.
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Figure 2: The average accuracies for predicting challenge ob-
tained from 50 runs for each configuration using the whole
training data (1006 samples). Each configuration represents
the amount of the initial labeled data used to build the model.
In each iteration the 10 most uncertain samples are selected
and labelled.

10.2 The Size of the Learning Batch
During the learning process and in each iteration, the learner can
choose a number of instances to be labeled (called the learning
batch). The size of this set impacts the speed of the modeling pro-
cess. To empirically investigate this effect, we run a number of
experiments where the size of the learning batch is set to 1, 10, 20
or 50 samples. The experiment is conducted on the frustration and
challenge datasets. A classifier with a random selection of sam-
ples that uses one sample per truing iteration is also presented for
comparison. The results obtained presented in Fig. 3 and Fig. 4
illustrate that models that uses batches of smaller sizes are more
efficient than the others. In particular, the models that uses a batch
of size one yield the smallest size of training data while achieving
similar performance to the other models. The results are not very
obvious as one would expect that larger batch size would give the
model more knowledge faster and thereafter the model is expected
to converge with less data. The behavior obtained can be explained
by the process of learning. When a small batch size is used, the
AL fully grasps the new knowledge and searches for the next best
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Figure 3: Average accuracies for predicting frustration obtained
from 50 runs for each configuration using the full dataset (850
samples). Each configuration differs by the size of the learning
batch (samples to be labelled in each iteration).

sample to inquiry. On the contrary, the information gain of batch of
size 20 for instance is smaller as the learner chooses the 20 samples
to be labeled in one iteration and misses the chance to learn from
each sample individually.

10.3 Modelling Accuracies
The models constructed in our previous experiment suggest that
models of high accuracies can be built using the AL approach. The
models built using the full dataset and a learning batch of size 10
for instance, achieved very accurate results (88.4% and 71.4% for
predicting frustration and challenge, respectively) that are compa-
rable to the best presented in the literature [33] using only part of
the dataset. The results indicate the efficiency of the proposed ap-
proach in modeling player experience and in exploring the search
space.

10.4 Scalability
In previous sections, we described how the method works and il-
lustrated the results in cases where the full dataset was already
available. The results indicate that by using smaller portion of the
data, models that are as accurate as those constructed from the full
dataset can be constructed. It is interesting however to examine
the method behavior on datasets from smaller sizes and to check
whether this claim still holds. For this purpose, we randomly chose
425 and 503 instances from each of the dataset and treated these
new subsets as our full datasets. The experiment presented in Sec-
tion 10.1 is then repeated and the results obtained for predicting
frustration and challenge are presented in Fig. 5 and Fig. 6, respec-
tively.

As expected, the models constructed are slightly less accurate than
those constructed from the full set but the results indicate a simi-
lar behavior in general. The different configurations in both cases
gradually improve the performance as they inquiry more instances.
In the latter case (using half the size of the data) the models con-
verge faster with fewer amounts of labeled data. This of course
comes with the price of the higher error rate. The results suggest
however that the relationship between the size of the full dataset
and the amount of data that needs to be labeled is a non-linear one.
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Figure 4: Average accuracies for predicting challenge obtained
from 50 runs for each configuration using the full dataset (1006
samples). Each configuration differs by the size of the learning
batch (samples to be labelled in each iteration).

This also relates to the amount of information and its distribution
in the dataset. In our latter case for predicting frustration, the mod-
els seems to learn almost all they need from about 70% of the data
and thereafter more information would be redundant while In the
first case (Fig. 1), about 60% of the data were required to stabilize
the accuracy. This demonstrates the efficiency of the method as it
achieved high accuracy by effectively exploring the search space.

11. CONCLUSIONS
This paper presents the use of active learning method for model-
ing player experience. Active learning is an efficient approach pre-
sented in the literature to effectively learn from as less data as possi-
ble. This is achieved by intelligently exploring the search space and
inquiry only about informative instances. The approach speeds up
the learning process and largely reduces the amount of data needed
for training. We present how active learning generally works and
we describe its instantiation for our player modeling task. We use
a dataset of player behavior while playing Infinite Mario Bros. as
a test case and we build models for predicting reported frustration
and challenge. We run several experiments to investigate the per-
formance, the modeling accuracy and the scalability of the method.
The results show that models of high accuracies can be built using
smaller portions of the original dataset. The results also suggest
that the distribution of the training data has a great impact on the
amount of data needed to construct accurate models.

This work present the first step in building a full framework for
content personalization. The models constructed are to be used on-
line during the content generation process as they permit effective
selection of content instances for the player to explore. Player’s
behavior is then captured and her feedback is collected as needed.
As the process continues, personalized models are constructed that
effectively explore the player as she explores the game ultimately
leading to a better gameplay experience.

Another interesting future direction is the use of the proposed method
to rank instances of game content. This requires the construction of
models trained only on content parameters so that they can be used
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Figure 5: Average accuracies for predicting frustration obtained
from 50 runs of each configuration using half the size of the
training data (425 samples). In each iteration, 10 samples are
chosen to be labeled by the oracle.

to predict the appeal of a piece of content before the actual play
through. This could be beneficial for game designers who would
like to get average feedback on their design before shipping the
game.
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